Publications by authors named "Dylan Colli"

FiberSim is a flexible open-source model of myofilament-level contraction. The code uses a spatially explicit technique, meaning that it tracks the position and status of each contractile molecule within the lattice framework. This allows the model to simulate some of the mechanical effects modulated by myosin-binding protein C, as well as the dose dependence of myotropes and the effects of varying isoform expression levels.

View Article and Find Full Text PDF

In mammalian ventricular cardiomyocytes, invaginations of the surface membrane form the transverse tubular system (T-system), which consists of transverse tubules (TTs) that align with sarcomeres and Z-lines as well as longitudinal tubules (LTs) that are present between Z-lines in some species. In many cardiac disease etiologies, the T-system is perturbed, which is believed to promote spatially heterogeneous, dyssynchronous Ca release and inefficient contraction. In general, T-system characterization approaches have been directed primarily at isolated cells and do not detect subcellular T-system heterogeneity.

View Article and Find Full Text PDF

Key Points: Using 3D direct stochastic optical reconstruction microscopy (dSTORM), we developed novel approaches to quantitatively describe the nanoscale, 3D organization of ryanodine receptors (RyRs) in cardiomyocytes. Complex arrangements of RyR clusters were observed in 3D space, both at the cell surface and within the cell interior, with allocation to dyadic and non-dyadic pools. 3D imaging importantly allowed discernment of clusters overlapping in the z-axis, for which detection was obscured by conventional 2D imaging techniques.

View Article and Find Full Text PDF