In multispectral digital in-line holographic microscopy (DIHM), aberrations of the optical system affect the repeatability of the reconstruction of transmittance, phase and morphology of the objects of interest. Here we address this issue first by model fitting calibration using transparent beads inserted in the sample. This step estimates the aberrations of the optical system as a function of the lateral position in the field of view and at each wavelength.
View Article and Find Full Text PDFIn the context of digital in-line holographic microscopy, we describe an unsupervised methodology to estimate the aberrations of an optical microscopy system from a single hologram. The method is based on the Inverse Problems Approach reconstructions of holograms of spherical objects. The forward model is based on a Lorenz-Mie model distorted by optical aberrations described by Zernike polynomials.
View Article and Find Full Text PDFWe present a new method to achieve autofocus in digital holographic microscopy. The method is based on inserting calibrated objects into a sample placed on a slide. Reconstructing a hologram using the inverse problems approach makes it possible to precisely locate and measure the inserted objects and thereby derive the slide plane location.
View Article and Find Full Text PDF