Publications by authors named "Dylan Bayerl"

Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal-ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability.

View Article and Find Full Text PDF

We present experimental results confirming extreme quantum confinement in GaN/AlGaN ( = 0.65 and 1.0) nanowire and planar heterostructures, where the GaN layer thickness is of the order of a monolayer.

View Article and Find Full Text PDF

Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain.

View Article and Find Full Text PDF

Group III nitrides are widely used in commercial visible-wavelength optoelectronic devices, but materials issues such as dislocations, composition fluctuations, and strain negatively impact their efficiency. Nitride nanostructures are a promising solution to overcome these issues and to improve device performance. We used first-principles calculations based on many-body perturbation theory to study the electronic and optical properties of small-diameter InN nanowires.

View Article and Find Full Text PDF

An aqueous solution-based doping strategy was developed for controlled doping impurity atoms into a ZnO nanowire (NW) lattice. Through this approach, antimony-doped ZnO NWs were successfully synthesized in an aqueous solution containing zinc nitrate and hexamethylenetetramine with antimony acetate as the dopant source. By introducing glycolate ions into the solution, a soluble antimony precursor (antimony glycolate) was formed and a good NW morphology with a controlled antimony doping concentration was successfully achieved.

View Article and Find Full Text PDF