Publications by authors named "Dylan Bardgett"

Nanoscale superlattices represent a compelling platform for designed materials as the specific identity and spatial arrangement of constituent layers can lead to tunable properties. A number of kinetically stabilized, nonepitaxial superlattices with almost limitless structural tunability have been reported in telluride and selenide chemistries but have not yet been extended to sulfides. Here, we present SnS-TaS nanoscale superlattices with tunable layer architecture.

View Article and Find Full Text PDF

Nitride materials feature strong chemical bonding character that leads to unique crystal structures, but many ternary nitride chemical spaces remain experimentally unexplored. The search for previously undiscovered ternary nitrides is also an opportunity to explore unique materials properties, such as transitions between cation-ordered and -disordered structures, as well as to identify candidate materials for optoelectronic applications. Here, we present a comprehensive experimental study of MgSnN, an emerging II-IV-N compound, for the first time mapping phase composition and crystal structure, and examining its optoelectronic properties computationally and experimentally.

View Article and Find Full Text PDF