The cardiovascular system is a key player in human physiology, providing nourishment to most tissues in the body; vessels are present in different sizes, structures, phenotypes, and performance depending on each specific perfused tissue. The field of tissue engineering, which aims to repair or replace damaged or missing body tissues, relies on controlled angiogenesis to create a proper vascularization within the engineered tissues. Without a vascular system, thick engineered constructs cannot be sufficiently nourished, which may result in cell death, poor engraftment, and ultimately failure.
View Article and Find Full Text PDFBackground: Mitochondrial dynamics underlies malignant transformation, cancer progression, and response to treatment. Current research presents conflicting evidence for functions of mitochondrial fission and fusion in tumor progression. Here, we investigated how mitochondrial fission and fusion states regulate underlying processes of cancer progression and metastasis in triple-negative breast cancer (TNBC).
View Article and Find Full Text PDFExtracellular matrix (ECM) proteins, and most prominently, fibronectin (Fn), are routinely used in the form of adsorbed pre-coatings in an attempt to create a cell-supporting environment in both two- and three-dimensional cell culture systems. However, these protein coatings are typically deposited in a form which is structurally and functionally distinct from the ECM-constituting fibrillar protein networks naturally deposited by cells. Here, the cell-free and scalable synthesis of freely suspended and mechanically robust three-dimensional (3D) networks of fibrillar fibronectin (fFn) supported by tessellated polymer scaffolds is reported.
View Article and Find Full Text PDFNearly 12 million wounds are treated in emergency departments throughout the United States every year. The limitations of current treatments for complex, full-thickness wounds are the driving force for the development of new wound treatment devices that result in faster healing of both dermal and epidermal tissue. Here, a bilayered, biodegradable hydrogel dressing that uses microarchitecture to guide two key steps in the proliferative phase of wound healing, re-epithelialization, and revascularization, was evaluated in vitro in a cell migration assay and in vivo in a bipedicle ischemic rat wound model.
View Article and Find Full Text PDF