is one of the leading bacterial causes of gastroenteritis worldwide. It frequently contaminates poultry and other raw meat products, which are the primary sources of infections in humans. Plasmids, known as important mobile genetic elements, often carry genes for antibiotic resistance, virulence, and self-mobilization.
View Article and Find Full Text PDFCarboxysomes are anabolic bacterial microcompartments that play an essential role in CO2 fixation in cyanobacteria. This self-assembling proteinaceous organelle uses a polyhedral shell constructed by hundreds of shell protein paralogs to encapsulate the key CO2-fixing enzymes Rubisco and carbonic anhydrase. Deciphering the precise arrangement and structural organization of Rubisco enzymes within carboxysomes is crucial for understanding carboxysome formation and overall functionality.
View Article and Find Full Text PDFRubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) is the central enzyme for converting atmospheric CO into organic molecules, playing a crucial role in the global carbon cycle. In cyanobacteria and some chemoautotrophs, Rubisco complexes, along with carbonic anhydrase, are enclosed within specific proteinaceous microcompartments, known as carboxysomes. The polyhedral carboxysome shell ensures a dense packaging of Rubisco and creates a high-CO internal environment to facilitate the fixation of CO.
View Article and Find Full Text PDFCarboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation in cyanobacteria. This self-assembling proteinaceous organelle encapsulates the key CO-fixing enzymes, Rubisco and carbonic anhydrase, using a polyhedral shell constructed by hundreds of shell protein paralogs. Deciphering the precise arrangement and structural organization of Rubisco enzymes within carboxysomes is crucial for understanding the formation process and overall functionality of carboxysomes.
View Article and Find Full Text PDFGastrointestinal nematode (GIN) infection poses the most significant obstacle to the sustainable development of small ruminant (sheep and goat) farming globally. Resistance of GINs to synthetic anthelmintic drugs has led to rising interest in exploring alternative methods for parasite control, such as the utilization of bioactive plants with anti-parasitic properties. In this investigation, black seed (Nigella sativa), a shrub high in secondary antioxidant compounds, and sericea lespedeza (Lespedeza cuneata), a perennial legume high in tannins with anti-parasitic properties were combined to determine if two bioactive plants containing different types of secondary compounds can provide a stronger anti-parasitic effect than sericea lespedeza alone.
View Article and Find Full Text PDFThe human skin microbiome comprises diverse populations that differ temporally between body sites and individuals. The virome is a less studied component of the skin microbiome and the study of bacteriophages is required to increase knowledge of the modulation and stability of bacterial communities. Staphylococcus species are among the most abundant colonisers of skin and are associated with both health and disease yet the bacteriophages infecting the most abundant species on skin are less well studied.
View Article and Find Full Text PDFProtein nanocages have emerged as promising candidates for enzyme immobilization and cargo delivery in biotechnology and nanotechnology. Carboxysomes are natural proteinaceous organelles in cyanobacteria and proteobacteria and have exhibited great potential in creating versatile nanocages for a wide range of applications given their intrinsic characteristics of self-assembly, cargo encapsulation, permeability, and modularity. However, how to program intact carboxysome shells with specific docking sites for tunable and efficient cargo loading is a key question in the rational design and engineering of carboxysome-based nanostructures.
View Article and Find Full Text PDFIn waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear.
View Article and Find Full Text PDFSeeds of the species Acacia retinodes, A. provincialis, and A. tenuissima) from different growing locations were analysed for their mineral composition, free and bound polyphenols, and flavonoids.
View Article and Find Full Text PDFCarboxysomes are a paradigm of self-assembling proteinaceous organelles found in nature, offering compartmentalisation of enzymes and pathways to enhance carbon fixation. In α-carboxysomes, the disordered linker protein CsoS2 plays an essential role in carboxysome assembly and Rubisco encapsulation. Its mechanism of action, however, is not fully understood.
View Article and Find Full Text PDFThe growth in world population, climate change, and resource scarcity necessitate a sustainable increase in crop productivity. Photosynthesis in major crops is limited by the inefficiency of the key CO-fixing enzyme Rubisco, owing to its low carboxylation rate and poor ability to discriminate between CO and O. In cyanobacteria and proteobacteria, carboxysomes function as the central CO-fixing organelles that elevate CO levels around encapsulated Rubisco to enhance carboxylation.
View Article and Find Full Text PDFThis experiment was conducted to determine the effects of habituation to livestock trailers on stress responses in goats transported for long periods. Intact male Spanish goats (12-month old; BW = 31.6 ± 0.
View Article and Find Full Text PDFCarboxysomes are proteinaceous bacterial microcompartments that sequester the key enzymes for carbon fixation in cyanobacteria and some proteobacteria. They consist of a virus-like icosahedral shell, encapsulating several enzymes, including ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for the first step of the Calvin-Benson-Bassham cycle. Despite their significance in carbon fixation and great bioengineering potentials, the structural understanding of native carboxysomes is currently limited to low-resolution studies.
View Article and Find Full Text PDFThe high organic content of abattoir-associated process water provides an alternative for low-cost and non-invasive sample collection. This study investigated the association of microbial diversity from an abattoir processing environment with that of chicken meat. Water samples from scalders, defeathering, evisceration, carcass-washer, chillers, and post-chill carcass rinsate were collected from a large-scale abattoir in Australia.
View Article and Find Full Text PDFThe chemical, functional, anti-nutritional, and antioxidant composition of raw and roasted Acacia tenuissima seeds were determined to evaluate the impact of heat processing. The raw seeds were relatively high in protein (25.2 %), fat (10.
View Article and Find Full Text PDFis a bacterial pathogen recognised as a major cause of foodborne illness worldwide. While generally does not grow outside its host, it can survive outside of the host long enough to pose a health concern. This review presents an up-to-date description and evaluation of biological, mathematical, and statistical approaches used to understand the behaviour of this foodborne pathogen and suggests future avenues which can be explored.
View Article and Find Full Text PDFPopulation ageing and climate change are issues of global concern. Subsequently, the need for healthy and sustainable food systems to meet the increasing demands for health and aged care is evident. This review aimed to systematically identify studies reporting new or innovative foods, drinks and snack products in health and aged care, and describe health and environmental sustainability considerations where reported.
View Article and Find Full Text PDFThe carboxysome is a protein-based nanoscale organelle in cyanobacteria and many proteobacteria, which encapsulates the key CO-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase (CA) within a polyhedral protein shell. The intrinsic self-assembly and architectural features of carboxysomes and the semipermeability of the protein shell provide the foundation for the accumulation of CO within carboxysomes and enhanced carboxylation. Here, we develop an approach to determine the interior pH conditions and inorganic carbon accumulation within an α-carboxysome shell derived from a chemoautotrophic proteobacterium and evaluate the shell permeability.
View Article and Find Full Text PDFFresh truffles which include black truffle (Tuber melanosporum Vittadini) deteriorate and lose aroma rapidly after harvest; therefore, postharvest processing via freeze-drying or encapsulation is an option to preserve truffle aroma for extended supply. However, the aroma profile that directly affects the truffle quality and consumer acceptance is influenced by processing and producers require processing options that balance processing feasibility with retention of a suitable aroma profile. This study aimed to determine the impact of freeze-drying and encapsulation on the profile of key volatiles, consumer discrimination, and overall sensory impression (aroma intensity, liking, and acceptability) of processed truffle products compared to the starting material (positive control).
View Article and Find Full Text PDFThis study aimed to develop a novel technique to retain and stabilize compounds contributing to truffle aroma by encapsulation using β-cyclodextrin. Two experiments were conducted. In the first experiment, the key volatile profile and microbial population of products resulting from three different encapsulation methods, namely direct mixing method (M1), direct mixing followed by ethanol addition method (M2), and paste method (M3), were compared with untreated truffles (positive control) over a 90-day period.
View Article and Find Full Text PDFBacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes.
View Article and Find Full Text PDFThis study was conducted to determine if excitability score (ES) in goats can influence their physiological responses when subjected to stress. Thirty-six intact male Spanish goats (8-mo-old) were individually weighed and scored for excitability: 1 for calm (13 goats), 2 for moderately excitable (11 goats), and 3 for highly excitable (12 goats). To impose stress, goats were assigned to one of three treatments (TRT) for 90 min: (i) isolation in an open pen with metal grill panels, (ii) isolation in a pen with side panels covered using tarp sheets, and (iii) no isolation (control).
View Article and Find Full Text PDF