Both neurofibrillary tangles and senile plaques are associated with inflammation in Alzheimer's disease (AD). Their relative degree of induced neuroinflammation, however, is not well established. Mouse models of AD that expressed either human Aβ42 (n = 7) or human hyperphosphorylated tau protein alone (n = 3), wild type (n = 10), and human AD samples (n = 29 with 18 controls) were studied.
View Article and Find Full Text PDFPre-existing Alzheimer's disease is a risk factor for severe/fatal COVID-19 and infection by SARS-CoV2 virus has been associated with an increased incidence of un-masked Alzheimer's disease. The molecular basis whereby SARS-CoV2 may amplify Alzheimer's disease is not well understood. This study analyzed the molecular changes in autopsy brain tissues from people with pre-existing dementia who died of COVID-19 (n = 5) which was compared to equivalent tissues of people who died of COVID-19 with no history of dementia (n = 8), Alzheimer's disease pre-COVID-19 (n = 10) and aged matched controls (n = 10) in a blinded fashion.
View Article and Find Full Text PDFBackground: Both downregulation and elevation of microRNA miR-145 has been linked to an array of cardiopulmonary phenotypes, and a host of studies suggest that it is an important contributor in governing the differentiation of cardiac and vascular smooth muscle cell types.
Methods And Results: To better understand the role of elevated miR-145 in utero within the cardiopulmonary system, we utilized a transgene to overexpress miR-145 embryonically in mice and examined the consequences of this lineage-restricted enhanced expression. Overexpression of miR-145 has detrimental effects that manifest after birth as overexpressor mice are unable to survive beyond postnatal day 18.
miRNAs are small regulatory RNAs which govern gene expression post-transcriptionally by primarily binding to the 3'-UTR of mRNA target genes. miR-145 is a well-studied miRNA that has been implicated in controlling a range of biological processes. miR-145 is expressed in a variety of tissues and cell types and acts as a tumor-suppressor by regulating target gene signaling pathways involved in different aspects of tumor growth and progression.
View Article and Find Full Text PDFMicroRNAs are modulators of cellular phenotypes and their functions contribute to development, homeostasis, and disease. miR-145 is a conserved microRNA that has been implicated in regulating an array of phenotypes. These include supporting smooth muscle differentiation, repression of stem cell pluripotency, and inhibition of tumor growth and metastasis.
View Article and Find Full Text PDFCytoglobin is a widely expressed heme protein that binds oxygen, carbon monoxide and nitric oxide. Recent examination of cytoglobin in the vasculature indicates that it contributes to nitric oxide availability, which is central to normal blood vessel function through regulation of smooth muscle cell tone and physiological response. Given the potential implications of cytoglobin in vascular function, we examined how cytoglobin might be uniquely regulated in vascular smooth muscle cells.
View Article and Find Full Text PDFContext: The primary and definitive treatment of medullary thyroid cancer (MTC) is surgical resection. Recurrent or residual disease is typically a result of incomplete surgical removal.
Objective: Our objective is to develop a compound that assists in intraoperative visualization of cancer, which would have the potential to improve surgical cure rates and outcomes.
New targeted therapy approaches for certain subtypes of breast cancer, such as triple-negative breast cancers and other aggressive phenotypes, are desired. High levels of the mitotic checkpoint kinase Mps1/TTK have correlated with high histologic grade in breast cancer, suggesting a potential new therapeutic target for aggressive breast cancers (BC). Novel small molecules targeting Mps1 were designed by computer assisted docking analyses, and several candidate compounds were synthesized.
View Article and Find Full Text PDFCentrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication.
View Article and Find Full Text PDF