Background: Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-gamma-dependent antiviral mechanisms in epithelial cells in the airway.
Methods: Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-gamma.
Am J Respir Cell Mol Biol
February 2011
Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on pulmonary defense are incompletely understood. Based on the observation that interactions between bacteria and host cells result in the expression of critical defense genes regulated by NF-κB, we hypothesized that cigarette smoke alters NF-κB function. In this study, primary human tracheobronchial epithelial cells were treated with cigarette smoke extract (CSE) and exposed to Haemophilus influenzae, and the effects of CSE on bacteria-induced signaling and gene expression were assessed.
View Article and Find Full Text PDFBackground: The recognition of microbial molecular patterns via toll-like receptors (TLRs) is critical for mucosal defenses.
Methods: Using well-differentiated primary cultures of human airway epithelia, we investigated the effects of exposure of the cells to cytokines (TNF-alpha and IFN-gamma) and dexamethasone (dex) on responsiveness to the TLR2/TLR1 ligand Pam3CSK4. Production of IL-8, CCL20, and airway surface liquid antimicrobial activity were used as endpoints.
Am J Physiol Lung Cell Mol Physiol
July 2009
Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase and the receptor for the SARS and NL63 coronaviruses (CoV). Loss of ACE2 function is implicated in severe acute respiratory syndrome (SARS) pathogenesis, but little is known about ACE2 biogenesis and activity in the airways. We report that ACE2 is shed from human airway epithelia, a site of SARS-CoV infection.
View Article and Find Full Text PDFAcute exacerbations of chronic obstructive pulmonary disease (COPD) are responsible for a large proportion of the health care dollar expenditure, morbidity, and mortality related to COPD. Respiratory infections are the most common cause of acute exacerbations, but recent evidence indicates that the importance of respiratory syncytial virus (RSV) infection in COPD is under-appreciated. Improved detection of RSV using techniques based on the polymerase chain reaction accounts for much of the increased recognition of the importance of this virus in COPD patients.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
August 2009
Individuals exposed to cigarette smoke have a greater number and severity of viral infections, including respiratory syncytial virus (RSV) infections, than do nonsmokers, but the cellular mechanism is unknown. Our objective was to determine the mechanism by which cigarette smoke augments viral infection. We hypothesize that cigarette smoke causes necrosis and prevents virus-induced cellular apoptosis, and that this is associated with increased inflammation and viral replication.
View Article and Find Full Text PDFThe role of vitamin D in innate immunity is increasingly recognized. Recent work has identified a number of tissues that express the enzyme 1alpha-hydroxylase and are able to activate vitamin D. This locally produced vitamin D is believed to have important immunomodulatory effects.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2009
Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-kappaB (NF-kappaB). However, multiple signaling pathways modify NF-kappaB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae.
View Article and Find Full Text PDFIn patients with chronic obstructive pulmonary disease (COPD), the lower respiratory tract is commonly colonized by bacterial pathogens, including nontypeable Haemophilus influenzae. The H. influenzae HMW1 and HMW2 adhesins are homologous proteins that promote bacterial adherence to respiratory epithelium and are the predominant targets of the host immune response.
View Article and Find Full Text PDFSurfactant, highly enriched with phosphatidylcholine (PC), is secreted into the airspace by a classic apical secretory route, thereby maintaining lung stability. Herein, we show that adenoviral infection decreases surfactant PC in lungs by inhibiting its apical secretion and redirecting its export in alveolar cells by a basolateral route. These effects were not observed with replication-deficient adenovirus (Ad), specifically lacking early region 1 (E1) gene products.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a clinically important pathogen. It preferentially infects airway epithelial cells causing bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and life-threatening pneumonia in the immunosuppressed. The p53 protein is a tumor suppressor protein that promotes apoptosis and is tightly regulated for optimal cell growth and survival.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2007
Adenoviral evolution has generated mechanisms to resist host cell defense systems, but the biochemical basis for evasion of multiple antiviral pathways in the airway by adenoviruses is incompletely understood. We hypothesized that adenoviruses modulate airway epithelial responses to type I interferons by altering the levels and activation of specific Janus family kinase-signal transducer and activator of transcription (JAK-STAT) signaling components. In this study, specific effects of adenovirus type 5 (AdV) on selected JAK-STAT signal transduction pathways were identified in human tracheobronchial epithelial cells, with focus on type I interferon-dependent signaling and gene expression.
View Article and Find Full Text PDFRespiratory pathogens and toxins often assault the lung from the airway lumen. Airway epithelia may initiate and amplify inflammation in response to these attacks, but under certain conditions confinement of inflammation to the airway lumen may be beneficial to the host. Accordingly, we hypothesized that airway epithelial polarity allows different responses to basolateral vs apical stimuli that may modulate inflammation.
View Article and Find Full Text PDFBackground: The genetic disorder cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, impairing its function as a regulated anion channel involved with fluid secretion across epithelial cells. However, the clinical manifestations of CF are not thoroughly explained by impaired CFTR function. Experimental data have demonstrated oversulfation of glycoconjugates synthesized by CF epithelial cells of lung, pancreas, and other organs, and increases in the glycosaminoglycans dermatan sulfate and chondroitin sulfate in cultured skin fibroblasts from patients with CF.
View Article and Find Full Text PDFThe two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase.
View Article and Find Full Text PDFThe severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) preferentially infects airway epithelial cells, causing bronchiolitis, upper respiratory infections, asthma exacerbations, chronic obstructive pulmonary disease exacerbations, and pneumonia in immunocompromised hosts. A replication intermediate of RSV is dsRNA. This is an important ligand for both the innate immune receptor, TLR3, and protein kinase R (PKR).
View Article and Find Full Text PDFStudies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma.
View Article and Find Full Text PDFHuman respiratory syncytial virus (RSV) inhibits type I interferon-induced gene expression by decreasing expression of signal transducer and activator of transcription (Stat)2. To identify the RSV protein that mediates effects on Stat2, airway epithelial cells were infected with vaccinia virus vectors that express single RSV proteins. Expression of RSV nonstructural (NS)2 protein alone was sufficient to decrease Stat2 levels.
View Article and Find Full Text PDFPseudomonas aeruginosa secretes numerous factors that alter host cell function and may contribute to disease pathogenesis. Among recognized virulence factors is the redox-active phenazine pyocyanin. We have recently demonstrated that the precursor for pyocyanin, phenazine-1-carboxylic acid (PCA), increases oxidant formation and alters gene expression in human airway epithelial cells.
View Article and Find Full Text PDFMost animal species that can be infected with the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) do not reproducibly develop clinical disease, hindering studies of pathogenesis. To develop an alternative system for the study of SARS-CoV, we introduced individual SARS-CoV genes (open reading frames [ORFs]) into the genome of an attenuated murine coronavirus. One protein, the product of SARS-CoV ORF6, converted a sublethal infection to a uniformly lethal encephalitis and enhanced virus growth in tissue culture cells, indicating that SARS-CoV proteins function in the context of a heterologous coronavirus infection.
View Article and Find Full Text PDFRationale: Airway infection with Haemophilus influenzae causes airway inflammation, and isolation of new strains of this bacteria is associated with increased risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD).
Objective: To determine whether strains of H. influenzae associated with exacerbations cause more inflammation than strains that colonize the airways of patients with COPD.