Radiotherapy is hypothesized to have an immune-modulating effect on the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) to sensitize it to anti-PD-1 antibody (a-PD-1) treatment. We collected paired pre- and posttreatment specimens from a clinical trial evaluating combination treatment with GVAX vaccine, a-PD-1, and stereotactic body radiation (SBRT) following chemotherapy for locally advanced PDACs (LAPC). With resected PDACs following different neoadjuvant therapies as comparisons, effector cells in PDACs were found to skew toward a more exhausted status in LAPCs following chemotherapy.
View Article and Find Full Text PDFObjectives: Intimal sarcomas are rare, aggressive neoplasms that arise from large blood vessels. Characterization of the tumor immune microenvironment may suggest new treatment strategies.
Methods: Seventeen specimens from 7 patients were labeled by immunohistochemistry for programmed cell death 1 ligand 1 (PD-L1), CD45, CD8, CD4, FOXP3, CD20, CD68, and LAG3.
Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy necessitates optimization and maintenance of activated effector T cells (Teff). We prospectively collected and applied multi-omic analyses to paired pre- and post-treatment PDAC specimens collected in a platform neoadjuvant study of granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDAC vaccine (GVAX) vaccine ± nivolumab (anti-programmed cell death protein 1 [PD-1]) to uncover sensitivity and resistance mechanisms. We show that GVAX-induced tertiary lymphoid aggregates become immune-regulatory sites in response to GVAX + nivolumab.
View Article and Find Full Text PDFBackground: Immunotherapy has demonstrated a limited clinical efficacy in approximately 5% of cholangiocarcinoma. The main challenges for an effective immunotherapy response in cholangiocarcinoma arise from the tumor microenvironment, which is poorly understood.
Methods: For a comprehensive analysis of the tumor microenvironment in cholangiocarcinoma, we performed multiplex immunohistochemistry with two 15-marker immune panels and Nanostring assays for a comprehensive analysis of 104 surgically resected cholangiocarcinomas including intrahepatic, hilar, and distal cholangiocarcinoma.
Background: The majority of pancreatic ductal adenocarcinomas (PDAC) are diagnosed at the metastatic stage, and standard therapies have limited activity with a dismal 5-year survival rate of only 8%. The liver and lung are the most common sites of PDAC metastasis, and each have been differentially associated with prognoses and responses to systemic therapies. A deeper understanding of the molecular and cellular landscape within the tumor microenvironment (TME) metastasis at these different sites is critical to informing future therapeutic strategies against metastatic PDAC.
View Article and Find Full Text PDFEpigenetic therapies may modulate the tumor microenvironment. We evaluated the safety and optimal sequence of combination DNA methyltransferase inhibitor guadecitabine with a granulocyte macrophage-colony-stimulating-factor (GM-CSF) secreting colon cancer (CRC) vaccine (GVAX) using a primary endpoint of change in CD45RO + T cells. 18 patients with advanced CRC enrolled, 11 underwent paired biopsies and were evaluable for the primary endpoint.
View Article and Find Full Text PDFPurpose: Immunotherapy is currently ineffective for nearly all pancreatic ductal adenocarcinomas (PDAC), largely due to its tumor microenvironment (TME) that lacks antigen-experienced T effector cells (Teff). Vaccine-based immunotherapies are known to activate antigen-specific Teffs in the peripheral blood. To evaluate the effect of vaccine therapy on the PDAC TME, we designed a neoadjuvant and adjuvant clinical trial of an irradiated, GM-CSF-secreting, allogeneic PDAC vaccine (GVAX).
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma(PDAC) is resistant to the PD-1/PD-L1 blockade therapy. Previously, the combination of PD-1 blockade and vaccine therapy was shown to have a modest antitumor activity in murine models of PDAC. We used a murine syngeneic model of metastatic PDAC to identify, among multiple T cell modulators tested, which therapeutic agents in combination with the GVAX cancer vaccine and an anti-PD-1 antagonist antibody(αPD-1) are able to improve the survival.
View Article and Find Full Text PDFObjective: PDAC patients who undergo surgical resection and receive effective chemotherapy have the best chance of long-term survival. Unfortunately, we lack predictive biomarkers to guide optimal systemic treatment. Ex-vivo generation of PDO for pharmacotyping may serve as predictive biomarkers in PDAC.
View Article and Find Full Text PDFBackground: Mismatch repair proficient (MMRp) colorectal cancer (CRC) has been refractory to single-agent programmed cell death protein 1 (PD1) inhibitor therapy. Colon GVAX is an allogeneic, whole-cell, granulocyte-macrophage colony-stimulating factor -secreting cellular immunotherapy that induces T-cell immunity against tumor-associated antigens and has previously been studied in combination with low-dose cyclophosphamide (Cy) to inhibit regulatory T cells.
Methods: We conducted a single-arm study of GVAX/Cy in combination with the PD1 inhibitor pembrolizumab in patients with advanced MMRp CRC.
Pancreatic ductal adenocarcinoma (PDAC) represents an immune quiescent tumor that is resistant to immune checkpoint inhibitors. Previously, our group has shown that a GM-CSF-secreting allogenic pancreatic tumor cell vaccine (GVAX) may prime the tumor microenvironment by inducing intratumoral T cell infiltration. Here, we show that untreated PDACs express minimal indoleamine-2,3-dioxygenase (IDO1); however, GVAX therapy induced IDO1 expression on tumor epithelia as well as vaccine-induced tertiary lymphoid aggregates.
View Article and Find Full Text PDFBackground: The pancreatic cancer vaccine, GVAX, induces novel lymphoid aggregates in the otherwise immune quiescent pancreatic ductal adenocarcinoma (PDAC). GVAX also upregulates the PD-1/PD-L1 pathway, and a pre-clinical model demonstrated the anti-tumor effects of combination GVAX and anti-PD-1 antibody therapy (GVAX/αPD-1). Resistance to GVAX was associated with an immune-suppressive myeloid cell infiltration, which may limit further therapeutic gains of GVAX/αPD-1 therapy.
View Article and Find Full Text PDF