Carcass and meat quality are two important attributes for the beef industry because they drive profitability and consumer demand. These traits are of even greater importance in crossbred cattle used in subtropical and tropical regions for their superior adaptability because they tend to underperform compared to their purebred counterparts. Many of these traits are challenging and expensive to measure and unavailable until late in life or after the animal is harvested, hence unrealistic to improve through traditional phenotypic selection, but perfect candidates for genomic selection.
View Article and Find Full Text PDFBeef from Bos taurus indicus is associated with toughness compared to Bos taurus taurus, suggesting there is antagonism between adaptability to heat and beef quality. Resistance to cellular stress in muscle may be protective postmortem, thereby delaying its conversion to meat. Therefore, our objective was to determine pH decline, calpain-1 and caspase 3 activation, and proteolysis in different biological cattle types.
View Article and Find Full Text PDFBackground: Meat quality related phenotypes are difficult and expensive to measure and predict but are ideal candidates for genomic selection if genetic markers that account for a worthwhile proportion of the phenotypic variation can be identified. The objectives of this study were: 1) to perform genome wide association analyses for Warner-Bratzler Shear Force (WBSF), marbling, cooking loss, tenderness, juiciness, connective tissue and flavor; 2) to determine enriched pathways present in each genome wide association analysis; and 3) to identify potential candidate genes with multiple quantitative trait loci (QTL) associated with meat quality.
Results: The WBSF, marbling and cooking loss traits were measured in longissimus dorsi muscle from 672 steers.
Structural equation models involving latent variables are useful tools for formulating hypothesized models defined by theoretical variables and causal links between these variables. The objectives of this study were: (1) to identify latent variables underlying carcass and meat quality traits and (2) to perform whole-genome scans for these latent variables in order to identify genomic regions and individual genes with both direct and indirect effects. A total of 726 steers from an Angus-Brahman multibreed population with records for 22 phenotypes were used.
View Article and Find Full Text PDFConsumers demand meat that is both healthy and palatable, 2 attributes of meat that are affected by lipid content. Many cattle in the southern United States are Bos indicus influenced, as this improves the ability to survive and thrive in these subtropical regions. However, these animals tend to have leaner carcasses and less marbled meat products.
View Article and Find Full Text PDFAutogenous proteolytic enzymes of the calpain family are implicated in myofibrillar protein degradation. As a result, the μ-calpain gene and its specific inhibitor, calpastatin, have been repeatedly investigated for their association with meat quality traits in cattle; however, no functional mutation has been identified for these two genes. The objectives of this study were: (1) to assess breed composition effect on tenderness; (2) to perform a linkage disequilibrium (LD) analysis in μ-calpain and calpastatin genes as well as an association analyses with tenderness; and (3) to analyze putative functional SNPs inside the significant LD block for an effect on tenderness.
View Article and Find Full Text PDFTo continue the series that began in 1994, the National Beef Quality Audit () - 2016 was conducted to quantify the quality status of the market cow and bull beef sector, as well as determine improvements made in the beef and dairy industry since 2007. The NBQA-2016 was conducted from March through December of 2016, and assessed hide-on carcasses ( = 5,278), chilled carcasses ( = 4,285), heads ( = 5,720), and offal items ( = 4,800) in 18 commercial processing facilities throughout the United States. Beef cattle were predominantly black-hided; 68.
View Article and Find Full Text PDFThe objective of this study was to determine the influence of Brahman genetics on muscle contractile and metabolic phenotype and postmortem proteolysis. Cattle used in this study represent a continuous spectrum of Angus-Brahman genetic variation. Steers were harvested and Longissimus samples were collected at 1.
View Article and Find Full Text PDF