Metal-mediated base pairing of DNA has been a topic of extensive research spanning over more than four decades. Precise positioning of a single metal ion by predetermining the DNA sequence, as well as improved conductivity offered by the ions, make these structures interesting candidates in the context of using DNA in nanotechnology. Here, we report the formation and characterization of conjugates of long (kilo bases) homoguanine DNA strands with silver ions.
View Article and Find Full Text PDFThroughout the past few decades, guanine quadruplex DNA structures have attracted much interest both from a fundamental material science perspective and from a technologically oriented perspective. Novel guanine octuplex DNA, formed from coiled quadruplex DNA, was recently discovered as a stable and rigid DNA-based nanostructure. A detailed electronic structure study of this new nanomaterial, performed by scanning tunneling spectroscopy on a subsingle-molecule level at cryogenic temperature, is presented herein.
View Article and Find Full Text PDFGuanine quadruplex (G4)-DNA structures have sparked the interest of many scientists due to their important biological roles and their potential use in molecular nanoelectronics and nanotechnology. The high guanine content in G4-DNA endows it with mechanical stability, robustness, and improved charge transport properties-attractive attributes for a molecular nanowire. The self-driven formation of a novel G4-DNA-based nanostructure, coined guanine octuplex (G8)-DNA, is reported herein.
View Article and Find Full Text PDFCondensation and remodeling of nuclear genomes play an essential role in the regulation of gene expression and replication. Yet, our understanding of these processes and their regulatory role in other DNA-containing organelles, has been limited. This study focuses on the packaging of kinetoplast DNA (kDNA), the mitochondrial genome of kinetoplastids.
View Article and Find Full Text PDFUnderstanding charge transport in DNA molecules is a long-standing problem of fundamental importance across disciplines. It is also of great technological interest due to DNA's ability to form versatile and complex programmable structures. Charge transport in DNA-based junctions has been reported using a wide variety of set-ups, but experiments so far have yielded seemingly contradictory results that range from insulating or semiconducting to metallic-like behaviour.
View Article and Find Full Text PDFMetal-mediated base-paired DNA has long been investigated for basic scientific pursuit and for nanoelectronics purposes. Particularly attractive in these domains is the Ag-intercalated polycytosine DNA duplex. Extensive studies of this molecule have led to our current understanding of its self-assembly properties, high thermodynamic and structural stability, and high longitudinal conductivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
Nanopores have become an important tool for the detection and analysis of molecules at the single-molecule level. Surface modification of solid-state nanopores can improve their durability and efficiency. Peptides are ideal for surface modifications as they allow tailoring of multiple properties by a rational design of their sequence.
View Article and Find Full Text PDFPerovskite nanostructures have attracted much attention in recent years due to their suitability for a variety of applications such as photovoltaics, light-emitting diodes (LEDs), nanometer-size lasing, and more. These uses rely on the conductive properties of these nanostructures. However, electrical characterization of individual, thin perovskite nanowires has not yet been reported.
View Article and Find Full Text PDFUnderstanding the effect of external conditions, temperature in particular, on novel nanomaterials is of great significance. The powerful ability of scanning tunneling microscopy (STM) to characterize topography and electronic levels on a single molecule scale is utilized herein to characterize individual silver-containing poly(dG)-poly(dC) DNA molecules, at different temperatures. These measurements indicate that the molecule is a truly hybrid metal-organic nanomaterial with electronic states originating from both the DNA and the embedded silver.
View Article and Find Full Text PDFThe quest for a suitable molecule to pave the way to molecular nanoelectronics has been met with obstacles for over a decade. Candidate molecules such as carbon nanotubes lack the appealing trait of self-assembly, while DNA seems to lack the desirable feature of conductivity. Silver-containing poly(dG)-poly(dC) DNA (E-DNA) molecules have recently been reported as promising candidates for molecular electronics, owing to the selectivity of their metallization, their thin and uniform structure, their resistance to deformation, and their maximum possible high conductivity.
View Article and Find Full Text PDFThe rapid growth in demand for data and the emerging applications of Big Data require the increase of memory capacity. Magnetic memory devices are among the leading technologies for meeting this demand; however, they rely on the use of ferromagnets that creates size reduction limitations and poses complex materials requirements. Usually magnetic memory sizes are limited to 30-50 nm.
View Article and Find Full Text PDFCharge transport through molecular structures is interesting both scientifically and technologically. To date, DNA is the only type of polymer that transports significant currents over distances of more than a few nanometers in individual molecules. For molecular electronics, DNA derivatives are by far more promising than native DNA due to their improved charge-transport properties.
View Article and Find Full Text PDFOver the past decades, DNA, the carrier of genetic information, has been used by researchers as a structural template material. Watson-Crick base pairing enables the formation of complex 2D and 3D structures from DNA through self-assembly. Various methods have been developed to functionalize these structures for numerous utilities.
View Article and Find Full Text PDFThere is an increasing demand for realizing a simple Si based universal memory device working at ambient temperatures. In principle, nonvolatile magnetic memory can operate at low power consumption and high frequencies. However, in order to compete with existing memory technology, size reduction and simplification of the used material systems are essential.
View Article and Find Full Text PDFPerovskite nanostructures, both hybrid organo-metal and fully inorganic perovskites, have gained a lot of interest in the past few years for their intriguing optical properties in the visible region. We report on inorganic cesium lead bromide (CsPbBr) nanowires (NWs) having quantum confined dimensions corresponding to 5 unit cells. The addition of various hydrohalic acids (HX, X = Cl, Br, I) was found to highly affect the NW length, composition, and optical properties.
View Article and Find Full Text PDFWe describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution.
View Article and Find Full Text PDFD. Porath, A. Kotlyar, and co-workers transform DNA to a conducting material by metalization through coating or chemical modifications, as described on page 4839.
View Article and Find Full Text PDFMigration of silver atoms from silver nano-particles selectively to a double-stranded poly(dG)-poly(dC) polymer leads to metallization of the DNA. As a result the DNA molecules become shorter and thicker (higher), as evident from the atomic force microscopy imaging analysis. The metalized molecules can be detected by transmission and scanning electron microscopy in contrast to the initial non-metalized ones.
View Article and Find Full Text PDFThe REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
View Article and Find Full Text PDFWe present an integrated approach for highly sensitive identification and validation of substrate-specific kinases as cancer biomarkers. Our approach combines phosphoproteomics for high throughput cancer-related biomarker discovery from patient tissues and an impedimetric kinase activity biosensor for sensitive validation. Using non-small-cell lung cancer (NSCLC) as a proof-of-concept study, label-free quantitative phosphoproteomic analysis of a pair of cancerous and its adjacent normal tissues revealed 198 phosphoproteins that are over-phosphorylated in NSCLC.
View Article and Find Full Text PDFDNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate.
View Article and Find Full Text PDFSingle-molecule approaches to chemical reaction analysis can provide information that is not accessible by studying ensemble systems. Changes in the molecular structures of compounds tethered to the inner wall of a protein pore are known to affect the current carried through the pore by aqueous ions under a fixed applied potential. Here, we use this approach to study the substitution reactions of arsenic(III) compounds with thiols, stretching the limits of the protein pore technology to track the interconversion of seven reaction components in a network that comprises interconnected Walden cycles.
View Article and Find Full Text PDFIntegration of the HIV cDNA into the host chromosome is a key event in the viral replication cycle. It is mediated by the viral integrase (IN) enzyme, which is an attractive anti-HIV drug target. Here we present the first AFM imaging of IN-mediated DNA integration products in a two-LTR system.
View Article and Find Full Text PDFVerification by imaging of the structure of 3D DNA constructs, both bare and conjugated to metal nanoparticles, is challenging. We demonstrate here two transmission electron microscopy (TEM) based methods to distinguish between fully formed tetrahedra, synthesized from DNA conjugated with gold nanoparticles (GNPs) at their vertices, and structures which are only partially formed. When deposited on a surface, fully formed tetrahedra are expected to retain their 3D pyramidal structure, while partially formed structures are expected to form a 2D structure.
View Article and Find Full Text PDFProtein nanopores have been used as stochastic sensors for the detection of analytes that range from small molecules to proteins. In this approach, individual analyte molecules modulate the ionic current flowing through a single nanopore. Here, a new type of stochastic sensor based on an αHL pore modified with an aptamer is described.
View Article and Find Full Text PDF