Publications by authors named "Duygu B"

While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphocytes that can kill diseased- or virally-infected cells, mediate antibody dependent cytotoxicity and produce type I immune-associated cytokines upon activation. NK cells also contribute to the allo-immune response upon kidney transplantation either by promoting allograft rejection through lysis of cells of the transplanted organ or by promoting alloreactive T cells. In addition, they protect against viral infections upon transplantation which may be especially relevant in patients receiving high dose immune suppression.

View Article and Find Full Text PDF

The HLA-B15 typing by serological approaches defined the serological subgroups (or splits) B62, B63, B75, B76, B77 and B70 (B71 and B72). The scarcity of sera with specific anti-HLA antibodies makes the serological typing method difficult to discriminate a high variety of HLA antigens, especially between the B15 antigen subgroups. Advancements in DNA-based technologies have led to a switch from serological typing to high-resolution DNA typing methods.

View Article and Find Full Text PDF

Matching of human leukocyte antigen (HLA) gene polymorphisms by high-resolution DNA sequence analysis is the gold standard for determining compatibility between patient and donor for hematopoietic stem cell transplantation. Single-molecule sequencing (PacBio or MinION) is a newest (third) generation sequencing approach. MinION is a nanopore sequencing platform, which provides long targeted DNA sequences.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have recently received great attention for their regulatory roles in diverse cellular processes and for their contribution to several human pathologies. Modulation of miRNAs in vivo provides beneficial therapeutic strategies for the treatment of many diseases, as evidenced by various preclinical studies. However, specific issues regarding the in vivo use of miRNA inhibitors (antimiRs) such as organ-specific delivery, optimal dosing and formulation of the best chemistry to obtain efficient miRNA inhibition remain to be addressed.

View Article and Find Full Text PDF

Early and specific diagnosis of oxidative stress linked diseases as cardiac heart diseases remains a major dilemma for researchers and clinicians. MicroRNAs may serve as a better tool for specific early diagnostics and propose their utilization in future molecular medicines. We aimed to measure the microRNAs expressions in oxidative stress linked cardiac hypertrophic condition induced through stimulants as Endothelin and Isoproterenol.

View Article and Find Full Text PDF

Myocardial infarction (MI), the globally leading cause of heart failure, morbidity and mortality, involves post-MI ventricular remodeling, a complex process including acute injury healing, scar formation and global changes in the surviving myocardium. The molecular mechanisms involved in adverse post-infarct left ventricular remodeling still remain poorly defined. Recently, microRNAs have been implicated in the development and progression of various cardiac diseases as crucial regulators of gene expression.

View Article and Find Full Text PDF

MicroRNAs play pivotal roles in cardiac disease, and their therapeutic modulation raises exciting and unique opportunities, as well as challenges in the path toward clinical development and implementation. In this review, we provide a detailed overview of recent studies highlighting the important role of microRNAs in heart failure (HF) and the potential use of microRNA-based technology for diagnosis, prevention, and treatment of HF. We will focus on the strategies presently used for microRNA-based therapy by discussing their use and drawbacks, as well as the challenges and future directions for their development in the context of human HF.

View Article and Find Full Text PDF

Heart failure (HF) is the end stage of several pathological cardiac conditions including myocardial infarction, cardiac hypertrophy and hypertension. Various molecular and cellular mechanisms are involved in the development of HF. At the molecular level, the onset of HF is associated with reprogramming of gene expression, including downregulation of the alpha-myosin heavy chain (α-MHC) gene and sarcoplasmic reticulum Ca (2+) ATPase genes and reactivation of specific fetal cardiac genes such as atrial natriuretic factor and brain natriuretic peptide.

View Article and Find Full Text PDF