Publications by authors named "Duyckaerts C"

Article Synopsis
  • Alzheimer’s disease (AD) features include amyloid plaques and tau tangles, with differences in amyloid deposition noted in patients with APP duplications (APPdup) and Down syndrome (DS).
  • The study highlights that while AD typically has extensive Aβ deposits in the brain, APPdup and DS-AD show more Aβ in blood vessels, particularly with shorter Aβ peptides.
  • Significant differences were found in the types and locations of Aβ deposits among APPdup, DS-AD, sporadic AD cases, and controls, indicating distinct pathology linked to additional copies of the APP gene.
View Article and Find Full Text PDF
Article Synopsis
  • A study involving 20 COVID-19 cases identified cerebral microangiopathy in six patients, marked by changes in white matter and small artery diseases as seen on MRI.
  • The condition featured perivascular alterations such as vacuolization, macrophage clusters, and large axonal swellings, suggesting blood-brain barrier disruption without evidence of direct viral presence in the brain.
  • Detection of the SARS-CoV-2 spike protein in brain endothelial cells, particularly within the Golgi apparatus, indicates a unique interaction that might affect vascular permeability and contribute to long-term neurological effects of COVID-19.
View Article and Find Full Text PDF

Background: APP duplication is a rare genetic cause of Alzheimer disease and cerebral amyloid angiopathy (CAA). We aimed to evaluate the phenotypes of APP duplications carriers.

Methods: Clinical, radiological, and neuropathological features of 43 APP duplication carriers from 24 French families were retrospectively analyzed, and MRI features and cerebrospinal fluid (CSF) biomarkers were compared to 40 APP-negative CAA controls.

View Article and Find Full Text PDF

Background: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the gene.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines the controversial link between somatic copy number variations (CNVs) and Alzheimer's disease (AD) using low-coverage single-cell whole-genome sequencing across different brain regions.
  • - Among neurons studied from AD patients and healthy controls, deletions of CNVs were found to be more common, with a slightly higher CNV frequency in AD neurons, although these differences weren't statistically significant.
  • - The research highlights that laser capture microdissection (LCM) resulted in higher variability in read depth compared to fluorescence activated cell sorting (FACS) and introduces a principal component analysis method to improve data quality.
View Article and Find Full Text PDF

We investigated the presence of misfolded alpha-Synuclein (α-Syn) in minor salivary gland biopsies in relation to substantia nigra pars compacta (SNc) damage measured using magnetic resonance imaging in patients with isolated rapid eye movement sleep behavior disorder (iRBD) and Parkinson's disease (PD) as compared to healthy controls. Sixty-one participants (27 PD, 16 iRBD, and 18 controls) underwent a minor salivary gland biopsy and were scanned using a 3 Tesla MRI. Deposits of α-Syn were found in 15 (55.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple System Atrophy (MSA) is a rare neurodegenerative disease characterized by abnormal protein aggregation and leads to motor and autonomic dysfunction.
  • Previous genetic studies didn’t find variants linked to MSA, prompting researchers to focus on autopsy-confirmed cases rather than merely clinical diagnoses.
  • The study identified significant genetic markers associated with MSA (located on chromosomes 3, 4, and 8), particularly highlighting the potential role of the ZIC4 gene in neuron vulnerability, especially in patients with different MSA types.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by intracerebral accumulations of extracellular amyloid-β (Aβ) plaques and intracellular tau pathology that spread in the brain. Three types of tau lesions occur in the form of neuropil threads, neurofibrillary tangles, and neuritic plaques i.e.

View Article and Find Full Text PDF

Neuropathologic criteria for progressive supranuclear palsy (PSP) proposed by a National Institute of Neurological Disorders and Stroke (NINDS) working group were published in 1994 and based on the presence of neurofibrillary tangles in basal ganglia and brainstem. These criteria did not stipulate detection methods or incorporate glial tau pathology. In this study, a group of 14 expert neuropathologists scored digital slides from 10 brain regions stained with hematoxylin and eosin (H&E) and phosphorylated tau (AT8) immunohistochemistry.

View Article and Find Full Text PDF

Background: The cellular and molecular alterations associated with synapse and neuron loss in Alzheimer's disease (AD) remain unclear. In transgenic mouse models that express mutations responsible for familial AD, neuronal and synaptic losses occur in populations that accumulate fibrillar amyloid-β 42 (Aβ42) intracellularly.

Objective: We aimed to study the subcellular localization of these fibrillar accumulations and whether such intraneuronal assemblies could be observed in the human pathology.

View Article and Find Full Text PDF

Frontotemporal dementia (FTD) is a heterogeneous clinical disorder characterized by progressive abnormalities in behavior, executive functions, personality, language and/or motricity. A neuropathological subtype of FTD, frontotemporal lobar degeneration (FTLD)-FET, is characterized by protein aggregates consisting of the RNA-binding protein fused in sarcoma (FUS). The cause of FTLD-FET is not well understood and there is a lack of genetic evidence to aid in the investigation of mechanisms of the disease.

View Article and Find Full Text PDF

The G4C2-repeat expansion in C9orf72 is the most common cause of frontotemporal dementia and of amyotrophic lateral sclerosis. The variability of age at onset and phenotypic presentations is a hallmark of C9orf72 disease. In this study, we aimed to identify modifying factors of disease onset in C9orf72 carriers using a family-based approach, in pairs of C9orf72 carrier relatives with concordant or discordant age at onset.

View Article and Find Full Text PDF

Amyloid-β (Aβ) pathology transmission has been described in patients following iatrogenic exposure to compounds contaminated with Aβ proteins. It can induce cerebral Aβ angiopathy resulting in brain hemorrhages and devastating clinical impacts. Iatrogenic transmission of tau pathology is also suspected but not experimentally proven.

View Article and Find Full Text PDF

Among genetic susceptibility loci associated with late-onset Alzheimer disease (LOAD), genetic polymorphisms identified in genes encoding lipid carriers led to the hypothesis that a disruption of lipid metabolism could promote disease progression. We previously reported that amyloid precursor protein (APP) involved in Alzheimer disease (AD) physiopathology impairs lipid synthesis needed for cortical networks' activity and that activation of peroxisome proliferator-activated receptor α (PPARα), a metabolic regulator involved in lipid metabolism, improves synaptic plasticity in an AD mouse model. These observations led us to investigate a possible correlation between PPARα function and full-length APP expression.

View Article and Find Full Text PDF

Microduplications of the 17q21.31 chromosomal region encompassing the MAPT gene, which encodes the Tau protein, were identified in patients with a progressive disorder initially characterized by severe memory impairment with or without behavioral changes that can clinically mimic Alzheimer disease. The unique neuropathological report showed a primary tauopathy, which could not be unanimously classified in a given known subtype, showing both 4R- and 3R-tau inclusions, mainly within temporal cortical subregions and basal ganglia, without amyloid deposits.

View Article and Find Full Text PDF

Jean-Martin Charcot described what he called amyotrophic lateral sclerosis in his 12 and 13 lessons published in 1873 by Bourneville. He distinguished the symptoms that were related to the lesion of the anterior horn of the spinal cord and those that were due to the degeneration (that he named "sclerosis") of its lateral column. He thought that "inflammation" progressed from the lateral column to the anterior horn (but the term inflammation is not to be taken in the current meaning): the lesion of the anterior horn was thus "deuteropathic".

View Article and Find Full Text PDF

Transactivation response DNA binding protein 43 kDa (TDP-43) is known to be a pathologic protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43 is normally a nuclear protein, but affected neurons of ALS or FTLD patients exhibit mislocalization of nuclear TDP-43 and cytoplasmic inclusions. Basic studies have suggested gain-of-neurotoxicity of aggregated TDP-43 or loss-of-function of intrinsic, nuclear TDP-43.

View Article and Find Full Text PDF
Article Synopsis
  • The genetic foundations of Lewy body dementia (LBD) remain unclear, prompting researchers to conduct whole-genome sequencing on both LBD patients and healthy individuals.
  • They discovered five distinct risk loci through genome-wide association analysis and identified mutations in the GBA gene as a significant factor.
  • The study suggests that LBD shares genetic risk factors and biological pathways with Alzheimer's and Parkinson's diseases, enhancing our understanding of this complex neurodegenerative disorder.
View Article and Find Full Text PDF

We investigated α-synuclein's (αSyn) seeding activity in tissue from the brain and enteric nervous system. Specifically, we assessed the seeding propensity of pathogenic αSyn in formalin-fixed tissue from the gastric cardia and five brain regions of 29 individuals (12 Parkinson's disease, 8 incidental Lewy body disease, 9 controls) using a protein misfolding cyclic amplification assay. The structural characteristics of the resultant αSyn assemblies were determined by limited proteolysis and transmission electron microscopy.

View Article and Find Full Text PDF

Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment.

View Article and Find Full Text PDF

Purpose: Pathogenic variants in STUB1 were initially described in autosomal recessive spinocerebellar ataxia type 16 and dominant cerebellar ataxia with cerebellar cognitive dysfunction (SCA48).

Methods: We analyzed a large series of 440 index cerebellar ataxia cases, mostly with dominant inheritance.

Results: STUB1 variants were detected in 50 patients.

View Article and Find Full Text PDF

Aims: Histological analysis of brain tissue samples provides valuable information about the pathological processes leading to common neurodegenerative disorders. In this context, the development of novel high-resolution imaging approaches is a current challenge in neuroscience.

Methods: To this end, we used a recent super-resolution imaging technique called STochastic Optical Reconstruction Microscopy (STORM) to analyse human brain sections.

View Article and Find Full Text PDF

Although Huntington's disease is a late-manifesting neurodegenerative disorder, both mouse studies and neuroimaging studies of presymptomatic mutation carriers suggest that Huntington's disease might affect neurodevelopment. To determine whether this is actually the case, we examined tissue from human fetuses (13 weeks gestation) that carried the Huntington's disease mutation. These tissues showed clear abnormalities in the developing cortex, including mislocalization of mutant huntingtin and junctional complex proteins, defects in neuroprogenitor cell polarity and differentiation, abnormal ciliogenesis, and changes in mitosis and cell cycle progression.

View Article and Find Full Text PDF