Publications by authors named "Duy-Khanh Dang"

It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice.

View Article and Find Full Text PDF

Although the anticonvulsant effects of ginsenosides are recognized, little is known about their effects on the convulsive behaviors induced by the activation of L-type Ca channels. Here, we investigated whether ginsenoside Re (GRe) modulates excitotoxicity induced by the L-type Ca channel activator Bay k-8644. GRe significantly attenuated Bay k-8644-induced convulsive behaviors and hippocampal oxidative stress in mice.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA.

View Article and Find Full Text PDF

We suggested that selenium-dependent glutathione peroxidase (GPx) plays a protective role against methamphetamine (MA)-induced dopaminergic toxicity. We focused on GPx-1, a major selenium-dependent enzyme and constructed a GPx-1 gene-encoded adenoviral vector (Ad-GPx-1) to delineate the role of GPx-1 in MA-induced dopaminergic neurotoxicity. Exposure to Ad-GPx-1 significantly induced GPx activity and GPx-1 protein levels in GPx-1-knockout (GPx-1-KO) mice.

View Article and Find Full Text PDF

p-Chloroamphetamine (PCA), an amphetamine derivative, has been shown to induce serotonergic toxicity. However, the precise mechanism of serotonergic toxicity induced by PCA remains unclear. In this study, PCA treatment (20 mg/kg, i.

View Article and Find Full Text PDF

We previously demonstrated that activation of protein kinase Cδ (PKCδ) is critical for methamphetamine (MA)-induced dopaminergic toxicity. It was recognized that microsomal epoxide hydrolase (mEH) also induces dopaminergic neurotoxicity. It was demonstrated that inhibition of PKC modulates the expression of mEH.

View Article and Find Full Text PDF

Methiopropamine (MPA) is structurally categorized as a thiophene ring-based methamphetamine (MA) derivative. Although abusive potential of MPA was recognized, little is known about the neurotoxic potential of MPA up to now. We investigated whether MPA induces dopaminergic neurotoxicity, and whether MPA activates a specific dopamine receptor.

View Article and Find Full Text PDF

The abuse of methamphetamine (MA), an amphetamine (AMPH)-type stimulant, has been demonstrated to be associated with various neuropsychotoxicity, including memory impairment, psychiatric morbidity, and dopaminergic toxicity. Compelling evidence from preclinical studies has indicated that protein kinase C (PKC), a large family of serine/threonine protein kinases, plays an important role in MA-induced neuropsychotoxicity. PKC-mediated N-terminal phosphorylation of dopamine transporter has been identified as one of the prerequisites for MA-induced synaptic dopamine release.

View Article and Find Full Text PDF

The pro-apoptotic role of Protein kinase Cδ (PKCδ), a member of the novel PKC subfamily, has been well-documented in various pathological conditions. In the central nervous system, the possible role of PKCδ has been studied, mainly in the condition of dopaminergic loss. It has been suggested that the phosphorylation of PKCδ at tyrosine 311 residue (Tyr) by redox-sensitive Src family kinases (SFKs) is critical for the caspase-3-mediated proteolytic cleavage, which produces the constitutively active cleaved form of PKCδ.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how ginsenoside Re (GRe) protects against methamphetamine (MA)-induced neurotoxicity by influencing the relationship between dynorphin and substance P in mice.
  • GRe was found to restore dynorphin levels and reduce the harmful effects caused by MA, with stronger protective effects observed in prodynorphin knockout mice compared to wild-type mice.
  • The results suggest that the balance of dynorphin and substance P is crucial for neuroprotection, as disruptions in this balance lead to increased neurotoxicity and a cascade of oxidative stress and inflammation.
View Article and Find Full Text PDF

This study was conducted to investigate the mechanism of action and extent of selective dopaminergic neurodegeneration caused by exposure to trichloroethylene (TCE) leading to the endogenous formation of the neurotoxin 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo) in rodents. Beginning at 3 months of age, male C57BL/6 mice received oral TCE dissolved in vehicle for 8 months. Dopaminergic neuronal loss was assessed by nigral tyrosine hydroxylase (TH) immunoreactivity.

View Article and Find Full Text PDF

Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms.

View Article and Find Full Text PDF
Article Synopsis
  • 3-Fluoromethamphetamine (3-FMA) is a potent derivative of methamphetamine that has been shown to cause dose-dependent mortality in mice, with significant negative effects on dopamine levels and receptor expression.
  • The study found that 3-FMA resulted in serious conditions like hyperthermia and oxidative stress, leading to changes in microglial behavior and cell death.
  • Activation of dopamine D1 receptors was identified as a key mechanism behind 3-FMA's neurotoxic effects, distinguishing its impact from that of methamphetamine, where both D1 and D2 receptors are involved.
View Article and Find Full Text PDF
Article Synopsis
  • This study explored how ginsenoside Re (Re) impacts sociability and memory issues caused by phencyclidine (PCP) in mice, focusing on the GPx-1 gene's role in mitochondrial dysfunction.
  • It was found that PCP caused more severe sociability and memory deficits in mice lacking the GPx-1 gene compared to normal mice.
  • Treatment with Re significantly improved neurotoxic effects from PCP, showing similar efficacy as a PHOX inhibitor, suggesting that Re's protective effects rely on the interaction between GPx-1 activity and PHOX.
View Article and Find Full Text PDF

The cystine/glutamate antiporter (system Xc, Sxc) transports cystine into cell in exchange for glutamate. Since xCT is a specific subunit of Sxc, we employed xCT knockout mice and investigated whether this antiporter affected methamphetamine (MA)-induced dopaminergic neurotoxicity. MA treatment significantly increased striatal oxidative burdens in wild type mice.

View Article and Find Full Text PDF

Background: Ginkgo biloba has been reported to possess free radical-scavenging antioxidant activity and anti-inflammatory properties. In our pilot study, YY-1224, a terpene trilactone-strengthened extract of G. biloba, showed anti-inflammatory, neurotrophic, and antioxidant effects.

View Article and Find Full Text PDF

Accumulating evidence suggests that cannabinoid ligands play delicate roles in cell survival and apoptosis decisions, and that cannabinoid CB1 receptors (CB1R) modulate dopaminergic function. However, the role of CB1R in methamphetamine (MA)-induced dopaminergic neurotoxicity in vivo remains elusive. Multiple high doses of MA increased phospho-ERK and CB1R mRNA expressions in the striatum of CB1R (+/+) mice.

View Article and Find Full Text PDF

Clinical and preclinical studies have indicated that chronic methamphetamine (MA) use is associated with extensive neurodegeneration, psychosis, and cognitive impairment. Evidence from animal models has suggested a considerable role of excess dopamine or glutamate, oxidative stress, neuroinflammation, and apoptosis in MA-induced neurotoxicity, and that protein kinase Cδ might mediate the interaction among these factors. In addition, the relatively long-lasting and recurrent nature of MA psychosis has been reproduced in animals treated with various dosing regimens of MA, which have shown behavioral sensitization, sociability deficits, and impaired prepulse inhibition.

View Article and Find Full Text PDF

Para-methoxymethamphetamine (PMMA) is a para-ring-substituted amphetamine derivative sold worldwide as an illegal psychotropic drug. Although PMMA use has been reported to lead to severe intoxication and even death, little is known about the mechanism(s) by which PMMA exerts its neurotoxic effects. Here we found that PMMA treatment resulted in phosphorylation of protein kinase Cδ (PKCδ) and subsequent mitochondrial translocation of cleaved PKCδ.

View Article and Find Full Text PDF

Background: Activation of NADPH oxidase (PHOX) plays a critical role in mediating dopaminergic neuroinflammation. In the present study, we investigated the role of PHOX in methamphetamine (MA)-induced neurotoxic and inflammatory changes in mice.

Methods: We examined changes in mitogen-activated protein kinases (MAPKs), mitochondrial function [i.

View Article and Find Full Text PDF

Background: We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment.

Methods: First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice.

View Article and Find Full Text PDF

We have demonstrated that mitochondrial oxidative damage and PKCδ overexpression contribute to methamphetamine-induced dopaminergic degeneration. Although it is recognized that antioxidant melatonin is effective in preventing neurotoxicity induced by methamphetamine, its precise mechanism remains elusive. C57BL/6J wild-type mice exhibited a similar degree of dopaminergic deficit when methamphetamine was administered during light and dark phases.

View Article and Find Full Text PDF

Recently, we proposed that inhibition of protein kinase (PK) Cδ may be a useful target for protection against methamphetamine (MA)-induced dopaminergic toxicity. We demonstrated that treatment with MA resulted in a significant decrease in phosphorylation of tyrosine hydroxylase (TH) at Ser(40) in the striatum, but not in the phosphorylation of TH at Ser(31) . In the present study, treatment with rottlerin (1.

View Article and Find Full Text PDF

Background: It has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH)/insulin-like growth factor-1 (IGF-1).

Methods: In this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice.

View Article and Find Full Text PDF

Platelet-activating factor (PAF), a potent mediator of inflammatory and immune responses, plays various roles in neuronal functions. However, little is known about the role of PAF/platelet-activating factor receptor (PAF-R) in Parkinson's disease. Treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) resulted in significant increases in PAF species in the striatum of wild-type mice.

View Article and Find Full Text PDF