Three new compounds (methyl-3,25-dihydroxycycloart-23-en-29-oate 3-sulfate (), methyl-3-hydroxy-25-methoxycycloart-23-en-29-oate 3-sulfate () and 3-hydroxy-25-methoxycycloart-23-ene 3-sulfate ()) and a known one (3-hydroxycycloart-24-en-23-one 3-sulfate ()) were isolated from Vietnamese red alga . All isolated compounds - showed potent inhibitory activity against yeast α-glucosidase with IC values of 16.62 ± 2.
View Article and Find Full Text PDFThe objective of this account is to summarize our recent progress with functional biosupramolecular systems concisely. The functions covered are artificial photosynthesis, anion transport, and sensing in lipid bilayer membranes. With artificial photosynthesis, the current emphasis is on the construction of ordered and oriented architectures on solid surfaces.
View Article and Find Full Text PDFHydrophilic anchoring is introduced as a promising strategy to constructively control the various interactions of synthetic pore sensors with the surrounding biphasic environment. Artificial rigid-rod beta barrels are selected as classical synthetic multifunctional pores and random-coil tetralysines are attached as hydrophilic anchors. The synthesis of this advanced pore is accomplished in 32 steps from commercially available starting materials.
View Article and Find Full Text PDFIn this report, we describe design, synthesis, evaluation and molecular dynamics simulations of synthetic multifunctional pores with pi-acidic naphthalenediimide clamps. Experimental evidence is provided for the formation of unstable but inert, heterogeneous and acid-insensitive dynamic tetrameric pores that are sensitive to base and ionic strength. Blockage experiments reveal that the introduction of aromatic electron donor-acceptor interactions provides access to the selective recognition of pi-basic intercalators within the pore.
View Article and Find Full Text PDFWe report the design, synthesis, and evaluation of synthetic multifunctional pores with adhesive, that is, electron-deficient naphthalenediimide (NDI) pi-clamps at their inner surface. We find that, in lipid bilayer membranes, comparable synthetic pores with and without pi-clamps have similar, nanomolar activity. Functional relevance of adhesive pi-clamping within synthetic pores is demonstrated by means of an innovative in situ blocker screening method.
View Article and Find Full Text PDFStudies on synthetic multifunctional pores with external and internal active sites for ligand gating and noncompetitive blockage are presented, with emphasis on the contribution of external ligands to the characteristics of pore. A comparison between different synthetic multifunctional pores reveals that the location of functional groups in rigid-rod beta-barrel pores is precisely reflected in the function: molecular recognition at the outer barrel surface results in pore opening, while molecular recognition at the inner barrel surface results in pore closing. Negligible nonspecific leakage, disappearance of pH gating, inhibition of intervesicular pore transfer, and maybe also the flickering of currents of single open pores characterize external ligands as adhesive cushions that liberate the pore from lateral pressure exerted by the surrounding membrane.
View Article and Find Full Text PDFDesign, synthesis, and multifunctionality of p-octiphenyl beta-barrel pores with external LRL triads and internal HH dyads are described. Molecular recognition of anionic fullerenes > calixarenes > pyrenes by guanidinium arrays at the outer pore surface is shown to result in pore opening, whereas alpha-helix recognition within the topologically matching internal space is shown to result in noncompetitive pore blockage. This experimental evidence for multifunctionality is supported by comparison with pertinent control pores and blockers, by structural studies using FRET from p-octiphenyl donors in the pore to BODIPY acceptors in the bilayer, and by molecular mechanics simulations.
View Article and Find Full Text PDF