Publications by authors named "Duy Tien Ta"

Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues.

View Article and Find Full Text PDF
Article Synopsis
  • An intein-mediated protein ligation (IPL) method is introduced for producing nanobodies with a clickable alkyne group at their C-terminus, enhancing their functionality.
  • The process involves expressing and extracting a nanobody-intein-chitin binding domain fusion protein in E. coli SHuffle T7 cells using LB medium, resulting in high yields of alkynated nanobodies that maintain their target-binding ability.
  • This efficient and cost-effective protocol enables the large-scale production of modified nanobodies for applications in biosurfaces and advanced medical techniques like targeted drug delivery and imaging surgery through covalent coupling with azide-containing agents.
View Article and Find Full Text PDF

Directed evolution of oxidoreductases to improve their catalytic properties is being ardently pursued in the industrial, biotechnological, and biopharma sectors. Hampering this pursuit are current enzyme screening methods that are limited in terms of throughput, cost, time, and complexity. We present a directed evolution strategy that allows for large-scale one-pot screening of glucose oxidase (GOx) enzyme libraries in well-mixed homogeneous solution.

View Article and Find Full Text PDF

The conversion of cellulosic biomass into biofuels requires degradation of the biomass into fermentable sugars. The most efficient natural cellulase system for carrying out this conversion is an extracellular multi-enzymatic complex named the cellulosome. In addition to temperature and pH stability, mechanical stability is important for functioning of cellulosome domains, and experimental techniques such as Single Molecule Force Spectroscopy (SMFS) have been used to measure the mechanical strength of several cellulosomal proteins.

View Article and Find Full Text PDF

Artificial multiprotein complexes are sought after reagents for biomolecular engineering. A current limiting factor is the paucity of molecular scaffolds which allow for site-specific multicomponent assembly. Here, we address this limitation by synthesizing bioorthogonal elastin-like polypeptide (ELP) scaffolds containing periodic noncanonical l-azidohomoalanine amino acids in the guest residue position.

View Article and Find Full Text PDF

Protein-conjugated magnetic nanoparticles (mNPs) are promising tools for a variety of biomedical applications, from immunoassays and biosensors to theranostics and drug-delivery. In such applications, conjugation of affinity proteins (e.g.

View Article and Find Full Text PDF

Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL).

View Article and Find Full Text PDF

In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.

View Article and Find Full Text PDF

Much effort has been put into the optimization of the functional activity of proteins. For biosensors this protein functional optimization will increase the biosensor's sensitivity and/or selectivity. However, the strategy chosen for the immobilization of the proteins to the sensor surface might be equally important for the development of sensor surfaces that are optimally biologically active.

View Article and Find Full Text PDF