Publications by authors named "Duy Q Dao"

Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283-333 K.

View Article and Find Full Text PDF
Article Synopsis
  • - This study explores how pentachlorophenol (PCP) reacts with hydroxyl (OH) radicals in the gas phase, using advanced computational methods like DFT and coupled cluster theory to analyze the degradation processes and identify byproducts.
  • - The research finds that reactions involving chlorine and OH abstractions are not favorable, while hydrogen abstraction and OH addition are more energetically viable and release energy.
  • - Rate constants for these reactions were calculated across a range of temperatures, with an estimated atmospheric lifetime for PCP of 1 to 12-16 years at 298 K, depending on OH concentrations.
View Article and Find Full Text PDF

Conventional water treatment processes often fail to effectively remove antibacterial drugs, necessitating advanced strategies. This study presents the synthesis of novel floating, visible light-active α-NiMoO/mpg-CN/EP composites for the removal of ciprofloxacin (CFX), a widely used quinolone antibiotic, from water. These composites are easily recoverable, highly stable, and demonstrate excellent reusability.

View Article and Find Full Text PDF

The atmospheric and aqueous ozonolysis of metazachlor (MTZ) is investigated using high-level quantum chemical and kinetic calculations (M06-2X/6-311 +  + G(3df,3pd)//M06-2X/6-31 + G(d,p) level of theory). The ozone (O)-initiated degradation pathways of MTZ under three different mechanisms, namely cycloaddition, oxygen-addition, and single electron transfer (SET), are explored in the temperature range of 283-333 K and 1 atm pressure. As a result, the cycloaddition reaction at the C16C18 double bond of the benzene ring of MTZ is found to be the most dominant channel in the atmosphere with the standard Gibbs free energy of reaction (ΔG) of - 129.

View Article and Find Full Text PDF

The energy sector has demonstrated significant enthusiasm for investigating post-combustion CO capture, storage, and separation. However, the practical application of current porous adsorbents is impeded by challenges related to cost competitiveness, stability, and scalability. Intregation of heteroatoms in the porous organic polymers (POPs) dispense it more susceptible for CO adsorption to attenuate green house gases.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a powerful Raman technique that provides high selectivity and sensitivity in analyzing the intermolecular interaction of a target compound adsorbed on the surface of a noble nanomaterial, i.e., silver, gold, or copper.

View Article and Find Full Text PDF

The oxidation of the common pesticide chlorpyrifos (CPF) initiated by HO radical and the risks of its degradation products were studied in the gaseous and aqueous phases via computational approaches. Oxidation mechanisms were investigated, including H-, Cl-, CH- abstraction, HO-addition, and single electron transfer. In both phases, HO-addition at the C of the pyridyl ring is the most energetically favorable and spontaneous reaction, followed by H-abstraction reactions at methylene groups (i.

View Article and Find Full Text PDF

Phosmet is an organophosphorus insecticide widely used in agriculture to control a range of insects; recently, it was banned by the European Union in 2022 due to its harmful effects. However, its environmental degradation and fate have not yet been evident. Thus, phosmet oxidation by HO˙ radicals was theoretically studied in this work using the DFT approach at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory.

View Article and Find Full Text PDF

The oxidation of L-proline (Pro) by HO radical in water and the influence of transition metal ions on this process has been revisited by using the density functional theory (DFT) method at the M05-2X/6-311 + + G(3df,3pd)//M05-2X/6-311 + + G(d,p) level of theory at the temperature of 298.15 K. The main reactive sites of the HO-initiated oxidation of Pro via hydrogen atom transfer (HAT) reactions are at the β- and γ-carbon, with the branching ratios being 44.

View Article and Find Full Text PDF

The development of efficient metal-free photocatalysts for the generation of reactive oxygen species (ROS) for sulfur mustard (HD) decontamination can play a vital role against the stockpiling of chemical warfare agents (CWAs). Herein, one novel concept is conceived by smartly choosing a specific ionic monomer and a donor tritopic aldehyde, which can trigger linker-independent regioselective protonation/deprotonation in the polymeric backbone. In this context, the newly developed vinylene-linked ionic polymers (TPA/TPD-Ionic) are further explored for visible-light-assisted detoxification of HD simulants.

View Article and Find Full Text PDF

The oxidation of widely-used herbicide metazachlor (MTZ) by hydroxyl radical (HO) in the gas and the aqueous phases was investigated in terms of mechanistic and kinetic behaviors using the M06-2X/6-311++G (3df, 3pd)//M06-2X/6-31 + G (d,p) level of theory over the temperature range 250-400 K. The formal hydrogen transfer, HO-addition, and single electron transfer mechanisms were considered. The overall rate constants in the gas phase range from 8.

View Article and Find Full Text PDF

In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands.

View Article and Find Full Text PDF

Hydroxyl radical (HO·) formation initiated by the Fenton-type reactions of Fe and Cu complexes of l-leucine (Leu) amino acid as well as its oxidation reaction by HO· was computationally investigated by using the density functional theory method at the M05-2X/6-311++G(3df,2pd)//M05-2X/6-311++G(d,p) level of theory in the aqueous phase. The results showed that dipole-salt is the main form of Leu in the physiological condition. Leu exhibits high chelating potential towards both Fe(III)/Fe(II) and Cu(II)/Cu(I) ions with the most favourable coordinating positions at two oxygen atoms of the -COO functional group.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide (CO) emission is soaring day by day due to fossil fuel combustion to fulfill the daily energy requirements of our society. The CO concentration should be stabilized to evade the deadly consequences of it, as climate change is one of the major consequences of greenhouse gas emission. Chemical fixation of CO to other value-added chemicals requires high energy due to its stability at the highest oxidation state, creating a tremendous challenge to the scientific community to fix CO and prevent global warming caused by it.

View Article and Find Full Text PDF

Herein, we demonstrate the successful construction of two Fe-metalated porous organic polymers having planar (Fe-Tt-POP) and non-planar (Fe-Rb-POP) geometry the ternary copolymerization strategy for the catalytic oxidative decontamination of different sulfur-based mustard gas simulants (HD). Fe-Tt-POP exhibits superior catalytic performance for the oxidation of thioanisole (TA) in comparison with Fe-Rb-POP. Interestingly, this activity difference can be further explored by operando DRIFTS and DFT computational studies.

View Article and Find Full Text PDF

Diterpenoids are abundant and important compounds in Euphorbia species owing to their structural diversity; therefore, in this study, we investigate the modern-concept antioxidant activities, including free-radical scavenging and oxidative DNA damage repairing, of highly oxygenated diterpenoids originating from the aerial part of . Four compounds with structural types of -abietane, containing a fused furan ring in their structures, including euphelionolide A (), euphelionolide D (), euphelionolide I (), and euphelionolide L () are selected. First, the radical-scavenging activity of these compounds was evaluated with two typical radicals HOO and HO in water and pentyl ethanoate (PEA, to mimic lipid environment) via three main mechanisms, namely, hydrogen atom transfer (HAT), radical adduct formation (RAF), and single electron transfer.

View Article and Find Full Text PDF

Antioxidant and UV absorption activities of three aaptamine derivatives including piperidine[3,2-]demethyl(oxy)aaptamine (C1), 9-amino-2-ethoxy-8-methoxy-3-benzo[de][1,6]naphthyridine-3-one (C2), and 2-(-butyl)-7,8-dimethoxybenzo[de]imidazo[4,5,1-][1,6]-naphthyridin-10(9)-one (C3) were theoretically studied by density functional theory (DFT). Direct antioxidant activities of C1-C3 were firstly evaluated their intrinsic thermochemical properties and the radical scavenging activity of the potential antioxidants with the HOO˙/HO˙ radicals four mechanisms, including: hydrogen atom transfer (HAT), single electron transfer (SET), proton loss (PL) and radical adduct formation (RAF). Kinetic calculation reveals that HOO˙ scavenging in water occurs HAT mechanism with C1 ( , 7.

View Article and Find Full Text PDF

Direct and indirect antioxidant activities of rosmarinic acid (RA) based on HOO˙/CHOO˙ radical scavenging and Fe(iii)/Fe(ii) ion chelation were theoretically studied using density functional theory at the M05-2X/6-311++G(2df,2p) level of theory. First, four antioxidant mechanisms including hydrogen atom transfer (HAT), radical adduct formation (RAF), proton loss (PL) and single electron transfer (SET) were investigated in water and pentyl ethanoate (PEA) phases. Regarding the free radical scavenging mechanism, HAT plays a decisive role with overall rate coefficients of 1.

View Article and Find Full Text PDF

Primary and secondary antioxidant activities of pyridoxal have been investigated by using density functional theory (DFT) at the M05-2X level combined with 6-311++G(d,p) basis set for non-metallic atoms and LanL2DZ for metallic ions. The former has been examined by its free radical scavenging activity towards HOO, HO, and NOvia different mechanisms including formal hydrogen transfer (FHT), proton transfer (PT), single electron transfer (SET), and radical adduct formation (RAF). The latter has been accomplished through its transition metal-chelating ability with Fe(III)/Fe(II) and Cu(II)/Cu(I) ions.

View Article and Find Full Text PDF

Heteroatom-rich porous-organic-polymers (POPs) comprising highly cross-linked robust skeletons with high physical and thermal stability, high surface area, and tunable pore size distribution have garnered significant research interest owing to their versatile functionalities in a wide range of applications. Here, we report a newly developed organogel-assisted porous-organic-polymer (POP) supported Cu catalyst (Cu@TpRb-POP). The organogel was synthesized a temperature induced gelation strategy, employing Schiff-base coupling between 2,4,6-triformylphloroglucinol aldehyde (Tp) and pararosaniline base (Rb).

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) was employed to gain an understanding of the chemical enhancement mechanism of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), an Agent Orange, adsorbed on a silver substrate surface. Experimental measurements were performed using a micro-Raman spectrophotometer with an excitation wavelength of 532 nm and successfully detected 2,4,5-T at a relatively low concentration of 0.4 nM.

View Article and Find Full Text PDF

Two ferrocenyl derivatives, and , were synthesized by a condensation reaction between the amino ferrocene and hydroxycinnamic acids, that is, caffeic acid () and ferulic acid (). The structures and purity of all compounds were characterized by H- and C NMR spectroscopies, Mass spectrometry (MS), and elemental analysis. The antioxidant properties of and and of its ligand were studied for free radical scavenging activity toward DPPH, superoxide anion (O), NO, and ABTS by UV-vis and electron spin resonance spectroscopies.

View Article and Find Full Text PDF

Porous organic polymers (POPs) constructed through covalent bonds have raised tremendous research interest because of their suitability to develop robust catalysts and their successful production with improved efficiency. In this work, we have designed and explored the properties and catalytic activity of a template-free-constructed, hydroxy (-OH) group-enriched porous organic polymer (Ph-POP) bearing functional Pd nanoparticles (Pd-NPs) by one-pot condensation of phloroglucinol (1,3,5-trihydroxybenzene) and terephthalaldehyde followed by solid-phase reduction with H. The encapsulated Pd-NPs rested within well-defined POP nanocages and remained undisturbed from aggregation and leaching.

View Article and Find Full Text PDF

Ribavirin and remdesivir have been preclinically reported as potential drugs for the treatment of SARS-CoV-2 infection, while light silver tetrylene complexes (NHE-AgCl and (NHE-AgCl) with E = C, Si, and Ge) have gained significant interest due to their promising applicability on the cytological scale. Firstly, the structures and bonding states of silver-tetrylene complexes (NHE-Ag) and bis-silver-tetrylene complexes (NHE-Ag-bis) were investigated using density functional theory (DFT) at the BP86 level with the def2-SVP and def2-TZVPP basis sets. Secondly, the inhibitory capabilities of the carbene complexes (NHC-Ag and NHC-Ag-bis) and the two potential drugs (ribavirin and remdesivir) on human-protein ACE2 and SARS-CoV-2 protease PDB6LU7 were evaluated using molecular docking simulation.

View Article and Find Full Text PDF

This computational and experimental work aims to elucidate physicochemical and photophysical natures of free radical scavenging and ultraviolet radiation (UVR) filtering activities of five terpenoids available in the extract of marine fungus. The antioxidant activities of ochraceopone F (C), aspertetranone D (C), cycloechinulin (C), wasabidienone E (C), and mactanamide (C) are evaluated by using density functional theory (DFT) at the M05-2X/6-311++G(d,p) level of theory in the gas phase, water, and pentyl ethanoate (PEA). Double antioxidant mechanisms allowing the second (H/e) donation such as double hydrogen atom transfer (dHAT), double single electron transfer-proton transfer (dSET-PT), and double sequential proton loss-electron transfer (dSPL-ET) are considered.

View Article and Find Full Text PDF