Aleutian disease (AD) brings tremendous financial losses to the mink industry. Selecting AD-resilient mink has been conducted to control AD. Such selections could have altered the patterns of genetic variation responding to selection pressures.
View Article and Find Full Text PDFThe recent chromosome-based genome assembly and the newly developed 70K single nucleotide polymorphism (SNP) array for American mink (Neogale vison) facilitate the identification of genetic variants underlying complex traits in this species. The objective of this study was to evaluate the association between consensus runs of homozygosity (ROH) with growth and feed efficiency traits in American mink. A subsample of two mink populations (n = 2,986) were genotyped using the Affymetrix Mink 70K SNP array.
View Article and Find Full Text PDFThe genome-wide analysis of runs of homozygosity (ROH) islands can be an effective strategy for identifying shared variants within a population and uncovering important genomic regions related to complex traits. The current study performed ROH analysis to characterize the genome-wide patterns of homozygosity, identify ROH islands and annotated genes within these candidate regions using whole-genome sequencing data from 100 American mink (Neogale vison). After sequence processing, variants were called using GATK and Samtools pipelines.
View Article and Find Full Text PDFCopy number variations (CNVs) are structural variants consisting of duplications and deletions of DNA segments, which are known to play important roles in the genetics of complex traits in livestock species. However, CNV-based genome-wide association studies (GWAS) have remained unexplored in American mink. Therefore, the purpose of the current study was to investigate the association between CNVs and complex traits in American mink.
View Article and Find Full Text PDFObjective: This study evaluates goat sperm motility in response to metabolic substrates and various inhibitors, aiming to assess the relative contribution of glycolysis and mitochondrial oxidation for sperm movement and adenosine triphosphate (ATP) production.
Methods: In the present study, two main metabolic substrates; 0 to 0.5 mM glucose and 0 to 30 mM pyruvate were used to evaluate their contribution to sperm movements of goats.
Understanding the genetic structure of the target population is critically important to develop an efficient genomic selection program in domestic animals. In this study, 2,973 American mink of six color types from two farms (Canadian Centre for Fur Animal Research (CCFAR), Truro, NS and Millbank Fur Farm (MFF), Rockwood, ON) were genotyped with the Affymetrix Mink 70K panel to compute their linkage disequilibrium (LD) patterns, effective population size (), genetic diversity, genetic distances, and population differentiation and structure. The LD pattern represented by average , decreased to <0.
View Article and Find Full Text PDFIndigenous chicken breeds have both cultural significance and economic value since they possess unique genetic characteristics that enable them to adapt to the local environment and contribute to biodiversity, food security, and sustainable agriculture in Vietnam. To (Tò in Vietnamese) chicken, a Vietnamese indigenous chicken breed, is popularly raised in Thai Binh province; however, little known is about the genetic diversity of this breed. In this study, we sequenced the complete mitochondrial genome of To chicken for a better understanding of the diversity and origin of the breed.
View Article and Find Full Text PDFBackground: Understanding the genetic mechanisms underlying coat color inheritance has always been intriguing irrespective of the animal species including American mink (Neogale vison). The study of color inheritance in American mink is imperative since fur color is a deterministic factor for the success of mink industry. However, there have been no studies during the past few decades using in-depth pedigree for analyzing the inheritance pattern of colors in American mink.
View Article and Find Full Text PDFThe importance of non-coding RNAs (ncRNAs), such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and circular RNAs (circRNA), in gene regulation is increasingly being appreciated in many species [...
View Article and Find Full Text PDFEstimating genetic parameters for growth traits is crucial to plan breeding strategies for improving meat production in indigenous sheep breeds. The study first tested the effects of environmental and maternal effects on five growth traits, including birth weight (BWT), weight at 120 days (WT120), weight at 180 days (WT180), weight at 270 days (WT270) and weight at 365 days of age (WT365) and then estimated genetic parameters for these traits using data obtained in 1215 Lohi sheep. The effects of factors, including year (YOB), season (SOB) and type of birth (TOB), age of dam (AOD) and sex on growth traits of Lohi sheep, were examined using analysis of variance (ANOVA) in R software.
View Article and Find Full Text PDFAvailability of a contiguous chromosome-level genome assembly is the foundational step to develop genome-based studies in American mink (Neogale vison). The main objective of this study was to provide a high quality chromosome-level genome assembly for American mink. An initial draft of the genome assembly was generated using 2,884,047 PacBio long reads.
View Article and Find Full Text PDFUnderstanding the genetics of fur characteristics and skin size is important for developing effective breeding programs in the mink industry. Therefore, the objectives of this study were to estimate the genetic and phenotypic parameters for pelt quality traits including live grading overall quality (LQU), live grading nap size (LNAP), dried pelt size (DPS), dried pelt nap size (DNAP) and overall quality of dried pelt (DQU), and body length and weight traits, including November body weight (Nov_BW), November body length (Nov_BL), harvest weight (HW) and harvest length (HL) in American mink. Dried pelt quality traits on 1195 mink and pelt quality traits on live animals on 1680 were collected from mink raised at two farms, in Nova Scotia and Ontario.
View Article and Find Full Text PDFDomestication and selection are the major driving forces responsible for creating genetic variability in farmed species. American mink has been under selection for more than 100 years for improved body size and pelt quality. This study aimed to identify the genomic regions subjected to selection for pelt quality traits, and coat color using the whole genome sequences of 100 mink raised in the Canadian Centre for Fur Animal Research (CCFAR) at Dalhousie Agriculture Campus (Truro, NS, Canada), and Millbank fur farm (Rockwood, ON, Canada).
View Article and Find Full Text PDFThe ineffectiveness of vaccination, medicine, and culling strategy leads mink farmers to control Aleutian disease (AD) by selecting AD-resilient mink based on AD tests. However, the genetic background of AD tests and their correlations with economically important or AD-resilient traits are limited. This study estimated the genetic and phenotypic correlations between four AD tests and seven body weight (BW) traits, six growth parameters from the Richards growth model, and eight feed-related traits.
View Article and Find Full Text PDFAmerican mink () is one of the major sources of fur for the fur industries worldwide, whereas Aleutian disease (AD) is causing severe financial losses to the mink industry. A counterimmunoelectrophoresis (CIEP) method is commonly employed in a test-and-remove strategy and has been considered a gold standard for AD tests. Although machine learning is widely used in livestock species, little has been implemented in the mink industry.
View Article and Find Full Text PDFBackground: Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta.
View Article and Find Full Text PDFBackground: Recently, Inflammatory Bowel Disease (IBD) has been proven as a risk factor for the increasing incidence of cervical cancer (CC) development. In this study, we identify these potential hub genes and their significant pathways that commonly interact between IBD and CC and these pathological mechanisms. To this end, we use bioinformatics and systems biology approaches to analyze the miRNA-mRNA, TFs-mRNA regulatory network.
View Article and Find Full Text PDFMastitis is one of the most widespread diseases in dairy cows and causes huge losses for the dairy industry. Molecular markers can be used for the quick diagnosis of mastitis infection, consequently reducing the loss caused by this disease. Lactoferrin (LTF) and Toll-like receptor 2 (TLR2) have been suggested as candidate genes for mastitis; however, their associations with the mastitis incidence and milk components have not been reported in Vietnamese Holstein cows.
View Article and Find Full Text PDFDespite the significant improvement of feed efficiency (FE) in pigs over the past decades, feed costs remain a major challenge for producers profitability. Improving FE is a top priority for the global swine industry. A deeper understanding of the biology underlying FE is crucial for making progress in genetic improvement of FE traits.
View Article and Find Full Text PDFIt has been indicated that there is an association between inflammatory bowel disease (IBD) and hepatocellular carcinoma (HCC). However, the molecular mechanism underlying the risk of developing HCC among patients with IBD is not well understood. The current study aimed to identify shared genes and potential pathways and regulators between IBD and HCC using a system biology approach.
View Article and Find Full Text PDFGenes (Basel)
February 2022
A global population of already more than seven billion people has led to an increased demand for food and water, and especially the demand for meat. Moreover, the cost of feed used in animal production has also increased dramatically, which requires animal breeders to find alternatives to reduce feed consumption. Understanding the biology underlying feed efficiency (FE) allows for a better selection of feed-efficient animals.
View Article and Find Full Text PDFLiver cancer is one of the most common cancers and the top leading cause of cancer death globally. However, the molecular mechanisms of liver tumorigenesis and progression remain unclear. In the current study, we investigated the hub genes and the potential molecular pathways through which these genes contribute to liver cancer onset and development.
View Article and Find Full Text PDFAleutian disease (AD), caused by the Aleutian mink disease virus (AMDV), is a major health concern that results in global economic losses to the mink industry. The unsatisfactory outcome of the culling strategy, immunoprophylaxis, and medical treatment in controlling AD have urged mink farmers to select AD resilient mink based on several detection tests, including enzyme-linked immunosorbent assay (ELISA), counterimmunoelectrophoresis (CIEP), and iodine agglutination test (IAT). However, the genetic analysis of these AD tests and their correlations with pelt quality, reproductive performance, packed-cell volume (PCV), and harvest length (HL) have not been investigated.
View Article and Find Full Text PDF