AMIA Annu Symp Proc
January 2024
We present a method to enrich controlled medication terminology from free-text drug labels. This is important because, while controlled medication terminology capture well-structured medication information, much of the information pertaining to medications is still found in free-text. First, we compared different Named Entity Recognition (NER) models including rule-based, feature-based, deep learning-based models with Transformers as well as ChatGPT, few-shot and fine-tuned GPT-3 to find the most suitable model that accurately extracts medication entities (ingredients, brand, dose, etc.
View Article and Find Full Text PDFFinding concepts in large clinical ontologies can be challenging when queries use different vocabularies. A search algorithm that overcomes this problem is useful in applications such as concept normalisation and ontology matching, where concepts can be referred to in different ways, using different synonyms. In this paper, we present a deep learning based approach to build a semantic search system for large clinical ontologies.
View Article and Find Full Text PDFStud Health Technol Inform
August 2019
Clinical terminologies play an essential role in enabling semantic interoperability between medical records. However, existing terminologies have several issues that impact data quality, such as content gaps and slow updates. In this study we explore the suitability of existing, community-driven resources, specifically Wikipedia, as a potential source to bootstrap an open clinical terminology, in terms of content coverage.
View Article and Find Full Text PDF