Publications by authors named "Dutta Sheetij"

BACKGROUNDThe mechanism(s) responsible for the efficacy of WHO-recommended malaria vaccine RTS,S/AS01 are not completely understood. We previously identified RTS,S vaccine-induced Plasmodium falciparum circumsporozoite protein-specific (PfCSP-specific) antibody measures associated with protection from controlled human malaria infection (CHMI). Here, we tested the protection-predicting capability of these measures in independent CHMI studies.

View Article and Find Full Text PDF

Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques.

View Article and Find Full Text PDF

Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence is used to estimate the proportion of individuals within a population previously infected, to track viral transmission, and to monitor naturally and vaccine-induced immune protection. However, in sub-Saharan African settings, antibodies induced by higher exposure to pathogens may increase unspecific seroreactivity to SARS-CoV-2 antigens, resulting in false positive responses. To investigate the level and type of unspecific seroreactivitiy to SARS-CoV-2 in Africa, we measured immunoglobulin G (IgG), IgA, and IgM to a broad panel of antigens from different pathogens by Luminex in 602 plasma samples from African and European subjects differing in coronavirus disease 2019, malaria, and other exposures.

View Article and Find Full Text PDF

Over 75% of malaria-attributable deaths occur in children under the age of 5 years. However, the first malaria vaccine recommended by the World Health Organization (WHO) for pediatric use, RTS,S/AS01 (Mosquirix), has modest efficacy. Complementary strategies, including monoclonal antibodies, will be important in efforts to eradicate malaria.

View Article and Find Full Text PDF

In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study ( = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG to 15 .

View Article and Find Full Text PDF

Mouse models are useful for the early down-selection of malaria vaccine candidates. The Walter Reed Army Institute of Research has optimized a transgenic Plasmodium berghei sporozoite challenge model to compare the efficacy of Plasmodium falciparum circumsporozoite protein (CSP) vaccines. GSK's RTS,S vaccine formulated in the adjuvant AS01 can protect malaria-naïve individuals against malaria.

View Article and Find Full Text PDF

Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant ( ) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple contributing to the overall dissociation.

View Article and Find Full Text PDF
Article Synopsis
  • * RBDs from different variants were compared, and those produced in this system showed similar structural properties to those made in mammalian cells, successfully binding to key human receptors and antibodies.
  • * Mice vaccinated with RBDs incorporated into a special liposomal adjuvant generated strong antibody responses, indicating potential for both broad and specific neutralization of different SARS-CoV-2 variants, suggesting this system could be useful for future pandemic responses.
View Article and Find Full Text PDF

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21).

View Article and Find Full Text PDF

Background: Soil-transmitted helminths (STH), Schistosoma spp. and Plasmodium falciparum are parasites of major public health importance and co-endemic in many sub-Saharan African countries. Management of these infections requires detection and treatment of infected people and evaluation of large-scale measures implemented.

View Article and Find Full Text PDF

Background: Malaria remains a key cause of mortality in low-income countries. RTS,S/AS01 is currently the most advanced malaria vaccine, demonstrating ∼50% efficacy in controlled human malaria infection (CHMI) studies in malaria-naive adults and ∼30%-40% efficacy in field trials in African infants and children. However, a higher vaccine efficacy is desirable.

View Article and Find Full Text PDF

Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP).

View Article and Find Full Text PDF

The Circumsporozoite Protein (CSP) of Plasmodium falciparum contains an N-terminal region, a conserved Region I (RI), a junctional region, 25-42 copies of major (NPNA) and minor repeats followed by a C-terminal domain. The recently approved malaria vaccine, RTS,S/AS01 contains NPNAx19 and the C-terminal region of CSP. The efficacy of RTS,S against natural infection is low and short-lived, and mapping epitopes of inhibitory monoclonal antibodies may allow for rational improvement of CSP vaccines.

View Article and Find Full Text PDF
Article Synopsis
  • - The RTS,S/AS01 vaccine showed moderate effectiveness against malaria in African infants and children, prompting researchers to investigate how the immune system responds to the vaccination.
  • - Using a unique blood transcriptional module framework, the study analyzed immune responses before and after vaccination, revealing significant changes in T-cell activation but fewer indications that these changes directly impacted malaria risk.
  • - The findings suggest that certain immune markers present before vaccination are linked to malaria risk, indicating potential roles for specific immune cell types in either promoting or inhibiting vaccine protection.
View Article and Find Full Text PDF
Article Synopsis
  • Coinfection with Plasmodium falciparum and various helminths in Mozambican individuals leads to distinct immune responses, as evidenced by a study of 715 participants using advanced Luminex technology to analyze antibody profiles.
  • Those who were exposed or infected with both types of parasites exhibited significantly higher levels of total IgE and specific IgG antibodies compared to individuals infected with only one type of parasite.
  • The findings also suggest that this coexposure may create a more welcoming immune environment for infections, as indicated by higher P. falciparum parasitemia in co-infected children.
View Article and Find Full Text PDF

RTS,S/AS01 is an advanced pre-erythrocytic malaria vaccine candidate with demonstrated vaccine efficacy up to 86.7% in controlled human malaria infection (CHMI) studies; however, reproducible immune correlates of protection (CoP) are elusive. To identify candidates of humoral correlates of vaccine mediated protection, we measured antibody magnitude, subclass, and avidity for Plasmodium falciparum (Pf) circumsporozoite protein (CSP) by multiplex assays in two CHMI studies with varying RTS,S/AS01B vaccine dose and timing regimens.

View Article and Find Full Text PDF

Human malaria affects the vast majority of the world's population with the Plasmodium falciparum species causing the highest rates of morbidity and mortality. With no licensed vaccine and leading candidates achieving suboptimal protection in the field, the need for an effective immunoprophylactic option continues to motivate the malaria research community to explore alternative technologies. Recent advances in the mRNA discipline have elevated the long-neglected platform to the forefront of infectious disease research.

View Article and Find Full Text PDF

Plasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA) repeat region.

View Article and Find Full Text PDF

Background: The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01 elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection.

View Article and Find Full Text PDF

Immune correlates of protection against clinical malaria are difficult to ascertain in low-transmission areas because of the limited number of malaria cases. We collected blood samples from 5,753 individuals in a Kenyan highland area, ascertained malaria incidence in this population over the next 6 years, and then compared antibody responses to 11 vaccine candidate antigens in individuals who did versus did not develop clinical malaria in a nested case-control study (154 cases and 462 controls). Individuals were matched by age and village.

View Article and Find Full Text PDF

Vaccine development has the potential to be accelerated by coupling tools such as systems immunology analyses and controlled human infection models to define the protective efficacy of prospective immunogens without expensive and slow phase 2b/3 vaccine studies. Among human challenge models, controlled human malaria infection trials have long been used to evaluate candidate vaccines, and RTS,S/AS01 is the most advanced malaria vaccine candidate, reproducibly demonstrating 40 to 80% protection in human challenge studies in malaria-naïve individuals. Although antibodies are critical for protection after RTS,S/AS01 vaccination, antibody concentrations are inconsistently associated with protection across studies, and the precise mechanism(s) by which vaccine-induced antibodies provide protection remains enigmatic.

View Article and Find Full Text PDF