Publications by authors named "Duterque-Coquillaud M"

Background And Objective: It has been shown that androgen receptor pathway inhibitor (ARPIs) treatment for metastatic castration-resistant prostate cancer (mCRPC) improves overall survival rates, but ARPIs appear to be associated with a higher frequency of treatment-related neuroendocrine prostate cancer (t-NEPC). Our aim was to quantify the proportion of prostate adenocarcinoma cases that transition to t-NEPC following ARPI therapy.

Methods: We conducted a comprehensive search of the literature on t-NEPC using databases including MEDLINE and Scopus.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on analyzing 6-month survival rates in patients with acetabular metastasis who underwent total hip arthroplasty using an acetabular cage, examining factors affecting survival and mechanical complications post-surgery.
  • A cohort of 93 patients was followed for at least 2 years, with survival rates indicating 78% at 6 months, 66% at 1 year, and 26% at 5 years, while 86% were able to walk again after surgery.
  • The research concluded that THA without curettage is an effective treatment for acetabular metastasis, allowing many patients to regain mobility and showing few serious complications.
View Article and Find Full Text PDF

Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men.

View Article and Find Full Text PDF

Background: Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer, arising from resistance to androgen-deprivation therapies. However, the molecular mechanisms associated with NEPC development and invasiveness are still poorly understood. Here we investigated the expression and functional significance of Fascin-1 (FSCN1), a pro-metastasis actin-bundling protein associated with poor prognosis of several cancers, in neuroendocrine differentiation of prostate cancer.

View Article and Find Full Text PDF

Older age is one of the strongest risk factors for severe COVID-19. In this study, we determined whether age-associated cellular senescence contributes to the severity of experimental COVID-19. Aged golden hamsters accumulate senescent cells in the lungs, and the senolytic drug ABT-263, a BCL-2 inhibitor, depletes these cells at baseline and during SARS-CoV-2 infection.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)) is primarily a respiratory illness. However, various extrapulmonary manifestations have been reported in patients with severe forms of COVID-19. Notably, SARS-CoV-2 was shown to directly trigger white adipose tissue (WAT) dysfunction, which in turn drives insulin resistance, dyslipidemia, and other adverse outcomes in patients with COVID-19.

View Article and Find Full Text PDF
Article Synopsis
  • FTO is a protein that helps control RNA, and its lower amounts are found in some types of cancer, which may make the cancer worse.
  • When FTO is turned off, it helps cancer cells grow and spread more easily in tests and in living organisms like mice.
  • The study shows that when FTO is less active, it changes how some important genes work, making tumors grow faster and possibly providing a way to treat these cancers better by targeting FTO.
View Article and Find Full Text PDF

Mounting evidence suggests that the gut-to-lung axis is critical during respiratory viral infections. We herein hypothesized that disruption of gut homeostasis during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may associate with early disease outcomes. To address this question, we took advantage of the Syrian hamster model.

View Article and Find Full Text PDF
Article Synopsis
  • The tumor suppressor gene located at 17p13.3 is often deleted or silenced in human tumors and plays a role in DNA damage response and regulation alongside P53 and SIRT1.
  • Research indicates that this gene is primarily expressed in the stroma of both normal and tumor prostate tissues, while showing low expression in various prostate epithelial cell types.
  • The depletion of this gene in myofibroblasts reduces specific protein expression and contractility, suggesting its crucial role in the tumor-promoting activity of the tumor microenvironment and linking its loss to prostate tumors through aging-related promoter hypermethylation.
View Article and Find Full Text PDF

Bone is the most common metastatic site for breast cancer. Although the estrogen-related receptor alpha (ERRα) has been implicated in breast cancer cell dissemination to the bone from the primary tumor, its role after tumor cell anchorage in the bone microenvironment remains elusive. Here, we reveal that ERRα inhibits the progression of bone metastases of breast cancer cells by increasing the immune activity of the bone microenvironment.

View Article and Find Full Text PDF

The current health crisis caused by COVID-19 is a challenge for oncology treatment, especially when it comes to radiotherapy. Cancer patients are already known to be very fragile and COVID-19 brings about the risk of severe respiratory complications. In order to treat patients safely while protecting medical teams, the entire health care system must optimize the way it approaches prevention and treatment at a time when social distancing is key to stemming this pandemic.

View Article and Find Full Text PDF

Bone metastasis (BM) in cancer remains a critical issue because of its associated clinical and biological complications. Moreover, BM can alter the quality of life and survival rate of cancer patients. Growing evidence suggests that bones are a fertile ground for the development of metastasis through a "vicious circle" of bone resorption/formation and tumor growth.

View Article and Find Full Text PDF

Bone is the most common metastatic site for breast cancer. Estrogen-related-receptor alpha (ERRα) has been implicated in cancer cell invasiveness. Here, we established that ERRα promotes spontaneous metastatic dissemination of breast cancer cells from primary mammary tumors to the skeleton.

View Article and Find Full Text PDF

Prostate cancers have a strong propensity to metastasize to bone and promote osteoblastic lesions. TMPRSS2:ERG is the most frequent gene rearrangement identified in prostate cancer, but whether it is involved in prostate cancer bone metastases is largely unknown. We exploited an intratibial metastasis model to address this issue and we found that ectopic expression of the TMPRSS2:ERG fusion enhances the ability of prostate cancer cell lines to induce osteoblastic lesions by stimulating bone formation and inhibiting the osteolytic response.

View Article and Find Full Text PDF

Bone metastasis is the major deleterious event in prostate cancer (PCa). TMPRSS2-ERG fusion is one of the most common chromosomic rearrangements in PCa. However, its implication in bone metastasis development is still unclear.

View Article and Find Full Text PDF

Bone metastases are one of the main complications of prostate cancer and they are incurable. We investigated whether and how estrogen receptor-related receptor alpha (ERRα) is involved in bone tumor progression associated with advanced prostate cancer. By meta-analysis, we first found that ERRα expression is correlated with castration-resistant prostate cancer (CRPC), the hallmark of progressive disease.

View Article and Find Full Text PDF

The expression gradient of the morphogen Sonic Hedgehog (SHH) is crucial in establishing the number and the identity of the digits during anteroposterior patterning of the limb. Its anterior ectopic expression is responsible for preaxial polydactyly (PPD). Most of these malformations are due to the gain-of-function of the Zone of Polarizing Activity Regulatory Sequence, the only limb-specific enhancer of SHH known to date.

View Article and Find Full Text PDF

Nine new 17-(piperazin-1-yl)pyridin-5-yl)steroids as abiraterone analogues were synthesized. Compounds 5d and 5g showed selective activities against 17α-hydroxylase/C17,20-lyase (CYP17A1) and aromatase (CYP19), respectively. IC50 values of 5d were 5.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the major public health problems in Western countries. Recently, the TMPRSS2:ERG gene fusion, which results in the aberrant expression of the transcription factor ERG, has been shown to be the most common gene rearrangement in PCa. Previous studies have determined the contributions of this fusion in PCa disease initiation and/or progression in vitro and in vivo.

View Article and Find Full Text PDF

In monolayer culture, primary articular chondrocytes have an intrinsic tendency to lose their phenotype during expansion. The molecular events underlying this chondrocyte dedifferentiation are still largely unknown. Several transcription factors are important for chondrocyte differentiation.

View Article and Find Full Text PDF

Direct modulation of gene expression by targeting oncogenic transcription factors is a new area of research for cancer treatment. ERG, an ETS-family transcription factor, is commonly over-expressed or translocated in leukaemia and prostate carcinoma. In this work, we selected the di-(thiophene-phenyl-amidine) compound DB1255 as an ERG/DNA binding inhibitor using a screening test of synthetic inhibitors of the ERG/DNA interaction followed by electrophoretic mobility shift assays (EMSA) validation.

View Article and Find Full Text PDF

Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised.

View Article and Find Full Text PDF

Osteopontin (OPN) is an extracellular matrix glycophosphoprotein that plays a key role in the metastasis of a wide variety of cancers. The high level of OPN expression in prostate cells is associated with malignancy and reduced survival of the patient. Recent studies on prostate cancer (PCa) tissue have revealed recurrent genomic rearrangements involving the fusion of the 5' untranslated region of a prostate-specific androgen-responsive gene with a gene coding for transcription factors from the ETS family.

View Article and Find Full Text PDF

Articular cartilage is a specialized connective tissue containing chondrocytes embedded in a network of extracellular macromolecules such as type II collagen and presents poor capacity to self-repair. Autologous chondrocyte transplantation (ACT) is worldwide used for treatment of focal damage to articular cartilage. However, dedifferentiation of chondrocytes occurs during the long term culture necessary for mass cell production.

View Article and Find Full Text PDF

The Ucma protein (Upper zone of growth plate and cartilage matrix associated protein) has recently been described as a novel secretory protein mainly expressed in cartilage and also as a novel vitamin-K-dependent protein named GRP (Gla-rich protein). This protein has the highest Gla content of any protein known to date. In this article, we identify four alternatively spliced variants of Ucma/GRP gene transcripts in mouse chondrocytes.

View Article and Find Full Text PDF