Publications by authors named "Dutartre P"

Phytochemical investigations of the roots of Spergularia marginata had led to the isolation of four previously undescribed triterpenoid saponins, a known one and one spinasterol glycoside. Their structures were established by extensive NMR and mass spectroscopic techniques as 3-O-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-α-L- arabinopyranosyl ester, 3-O-β-D-glucopyranosyl-(1 → 3)-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)- α-L-arabinopyranosyl ester, 3-O-β-D-glucopyranosyl-(1 → 4)-3-O-sulfate-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyl ester, and 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucuronopyranosyl 21-O-acetyl acacic acid. Their cytotoxicity was evaluated against two human cancer cell lines SW480 and MCF-7.

View Article and Find Full Text PDF

Inflammasomes are a family of proteins in charge of the initiation of inflammatory process during innate immune response. They are now considered major actors in many chronic inflammatory diseases. However, no major drug focusing on this target is currently on the market.

View Article and Find Full Text PDF

From the aerial parts, pericarps and roots of Solenostemma argel, three new pregnane glycosides (1-3) with two known ones and a new phenolic glycoside (4) have been isolated. Their structures were established by extensive 1D - and 2D NMR and mass spectroscopic analysis. The cytotoxicity of all compounds was evaluated against two human tumor cell lines (SW 480, MCF-7), but none of them was active in the concentration range 0.

View Article and Find Full Text PDF

In this work, 40 analogs with a natural maslinic acid core (from Olea europaea L.) and various aromatic azides were synthesized. A regiospecific, facile and practical synthesis of 1,5-triazolyl derivatives by Ru(II)-catalyzed azide-alkyne cycloaddition (RuAAC), and mono-, bis- and tri-1,4-triazolyl derivatives by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) was described.

View Article and Find Full Text PDF

Phytochemical investigation of the aerial parts of Chlorophytum deistelianum led to the isolation of four previously undescribed steroidal saponins called chlorodeistelianosides A-D with five known ones. Their structures were established mainly by extensive 1D and 2D NMR spectroscopic techniques and mass spectrometry as (25R)-3β-[(β-D-glucopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→4)]-β-D-xylopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosyl)oxy]-5α-spirostan-12-one, (24S,25S)-24-[(β-D-glucopyranosyl)oxy]-3β-[(β-d-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosyl)oxy]-5α-spirostan-12-one, (25R)-26-[(β-D-glucopyranosyl)oxy]-2α-hydroxy-22α-methoxy-5α-furostan-3β-yl β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside, and (25R)-26-[(β-D-glucopyranosyl)oxy]-3β-[(β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosyl)oxy]-5α-furost-20(22)-en-12-one. Cytotoxicity of most compounds was evaluated against one human cancer cell line (SW480) and one rat cardiomyoblast cell line (H9c2).

View Article and Find Full Text PDF

Four previously undescribed and one known oleanolic acid glycosides were isolated from the roots of Weigela stelzneri, and one previously undescribed and three known hederagenin glycosides were isolated from the leaves. Their structures were elucidated mainly by 2D NMR spectroscopic analysis and mass spectrometry as 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyloleanolic acid, 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranosyloleanolic acid, 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-glucopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranosyloleanolic acid, 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyloleanolic acid 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl ester, and 3-O-β-D-glucopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin 28-O-β-D-xylopyranosyl-(1 → 6)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-glucopyranosyl ester. The majority of the isolated compounds were evaluated for their cytotoxicity against two tumor cell lines (SW480 and EMT-6), and for their anti-inflammatory activity.

View Article and Find Full Text PDF

A new aromatic compound 3,4,5-trimethoxyphenyl-1-O-(4-sulfo)-β-D-glucopyranoside (1), in addition to two triterpenoid saponins (chebuloside II, arjunoglucoside II), two triterpenes (arjunolic acid and 3-betulinic acid) and sitosterol-3-O-β-D-glucopyranoside have been isolated from the barks of Terminalia catappa. Their structures have been established on the basis of spectroscopic techniques (1D/2D NMR) and MS. Their cytotoxicity and antiinflammatory activity, together with the antioxidant capacity of compound 1 were also evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Doxorubicin (DOX) is a chemotherapy drug that can cause heart damage through mechanisms involving oxidative stress and iron, but the exact relationship between iron and DOX-induced heart toxicity is debated.
  • In lab tests, combining DOX with dextran-iron affected cell survival differently in heart cells and cancer cells, with dextran-iron reducing harm in heart cells but increasing it in cancer cells.
  • In a mouse model with iron overload, although DOX decreased heart function and increased stress markers, the iron overload did not worsen these effects and could even protect against some heart damage caused by DOX.
View Article and Find Full Text PDF

Two triterpenoid saponins with two known ones have been isolated from the roots of Gypsophila arrostii var. nebulosa, and two new ones from the roots of Gypsophila bicolor. Their structures were established by extensive NMR and mass spectroscopic techniques as 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosylquillaic acid 28-O-β-d-xylopyranosyl-(1→4)-[β-d-glucopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-fucopyranosyl ester (1), 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosylgypsogenin 28-O-β-d-xylopyranosyl-(1→4)-[β-d-glucopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-fucopyranosyl ester (2), 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosylgypsogenin 28-O-β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-[(4-O-acetyl)-β-d-quinovopyranosyl-(1→4)]-β-d-fucopyranosyl ester (3), gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-{6-O-[3-hydroxy-3-methylglutaryl]-β-d-glucopyranosyl-(1→6)}-β-d-galactopyranosyl ester (4).

View Article and Find Full Text PDF

Six purine analogues bearing a nitrate ester group (potential NO donor) were tested on human THP-1 macrophages to investigate their effects on the inflammatory response. Only three analogues increased the basal level of IL-1β. Two analogues exacerbated the inflammatory response induced by ATP but not that induced by H2O2.

View Article and Find Full Text PDF

Four triterpenoid saponins (1-4) were isolated from Polycarpaea corymbosa Lamk. var. eriantha Hochst along with the known apoanagallosaponin IV (5).

View Article and Find Full Text PDF

Five oleanane-type saponins, 3-O-β-D-glucuronopyranosylzanhic acid 28-O-β-D-xylopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-(4-O-acetyl)-β-D-fucopyranosyl ester (1), 3-O-β-D-glucopyranosylzanhic acid 28-O-β-D-xylopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-(4-O-acetyl)-β-D-fucopyranosyl ester (2), zanhic acid 28-O-β-D-xylopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-(4-O-acetyl)-β-D-fucopyranosyl ester (3), zanhic acid 28-O-α-L-rhamnopyranosyl-(1→2)-4-O-[(3'-hydroxy-2'-methyl-butyroyloxy)-3-hydroxy-2-methyl-butyroyloxy]-β-D-fucopyranosyl ester (4), medicagenic acid 28-O-α-L-rhamnopyranosyl-(1→2)-4-O-[(3'-hydroxy-2'-methyl-butyroyloxy)-3-hydroxy-2-methyl-butyroyloxy]-β-D-fucopyranosyl ester (5), were isolated from the root barks of Ganophyllum giganteum. Compounds 4 and 5 possessed an unusual substitution of the C-4 position of the β-D-fucopyranosyl moiety by a C10 ester group formed by two symmetrical C5 nilic acid. From a chemotaxonomic point of view, their structures are in accordance with the previous saponins isolated from the Doratoxyleae tribe of the Sapindaceae family.

View Article and Find Full Text PDF

Three new spirostane-type glycosides (1-3) were isolated from the whole plant of Allium flavum. Their structures were elucidated mainly by 2D NMR spectroscopic analysis and mass spectrometry as (20S,25R)-2α-hydroxyspirost-5-en-3β-yl O-β-D-xylopyranosyl-(1→3)-[β-D-galactopyranosyl-(1→2)]-β-D-galactopyranosyl-(1→4)-β-D-galactopyranoside (1), (20S,25R)-2α-hydroxyspirost-5-en-3β-yl O-β-D-xylopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-galactopyranosyl-(1→4)-β-D-galactopyranoside (2), and (20S,25R)-spirost-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→2)]-β-D-glucopyranoside (3). The three saponins were evaluated for cytotoxicity against a human cancer cell line (colorectal SW480).

View Article and Find Full Text PDF

The phytochemical investigation of the root barks of Pittosporum verticillatum Bojer subsp. verticillatum led to the isolation of three new triterpene saponins, 3-O-[β-D-glucopyranosyl-(1→2)]-[α-L-arabinopyranosyl-(1→3)]-[α-L-arabinofuranosyl-(1→4)]-β-D-glucuronopyranosyl-21-O-(2-acetoxy-2-methylbutanoyl)-R1-barrigenol (1), 3-O-[β-D-glucopyranosyl-(1→2)]-[α-L-arabinopyranosyl-(1→3)]-[α-L-arabinofuranosyl-(1→4)]-β-D-glucuronopyranosyl-21-O-(2-acetoxy-2-methylbutanoyl)-28-O-acetyl-R1-barrigenol (2), 3-O-[β-D-glucopyranosyl-(1→2)]-[α-L-arabinopyranosyl-(1→3)]-[α-L-arabinofuranosyl-(1→4)]-β-D-glucuronopyranosyl-21-O-β,β-dimethylacryloyl-22-O-angeloyl-R1-barrigenol (3), and one known saponin senaciapittoside B (4). Their structures were elucidated mainly by 1D- and 2D-NMR spectroscopy and HRESIMS.

View Article and Find Full Text PDF

Kinin-vasoactive peptides activate two G-protein-coupled receptors (R), B(1)R (inducible) and B(2)R (constitutive). Their complex role in cardiovascular diseases could be related to differential actions on oxidative stress. This study investigated impacts of B(1)R or B(2)R gene deletion in mice on the cardiac function and plasma antioxidant and oxidant status.

View Article and Find Full Text PDF

Three new steroidal saponins and ten known ones were isolated from the bark of Dracaena marginata, along with two known steroidal saponins from the roots. Their structures were elucidated on the basis of extensive 1D and 2D NMR experiments and mass spectrometry as (25R)-26-(beta-D-glucopyranosyloxy)3beta,22alpha-dihydroxyfurost-5-en-1beta-yl O-alpha-L-rhamnopyranosyl-(1 --> 2)-[alpha-L-rhamnopyranosyl-(1 --> 4)]-beta-D-glucopyranoside (1), (25R)-26-(beta-D-glucopyranosyloxy)-3beta,22alpha-dihydroxyfurost-5-en-1beta-yl O-alpha-L-rhamnopyranosyl-(1 --> 2)-4-O-sulfo-alpha-L-arabinopyranoside (2), and (25S)-3beta-hydroxyspirost-5-en-1beta-yl O-alpha-L-rhamnopyranosyl-(1 --> 2)-4-O-sulfo-alpha-L-arabinopyranoside (3).

View Article and Find Full Text PDF

A new spirostanol saponin (1), along with four known saponins, dioscin (2), protodioscin (3), methyl-protodioscin (4), and indioside D (5), and one known steroid glycoalkaloid solamargine (6) were isolated from the two synonymous species, Solanum incanum and S. heteracanthum. The structure of the new saponin was established as (23S,25R)-spirost-5-en-3β,23-diol 3-O-{β-D-xylopyranosyl-(1→2)-O-α-L-rhamnopyranosyl-(1→4)-[O-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside}, by using a combination of 1D and 2D NMR techniques including (1)H, (13)C, COSY, TOCSY, NOESY, HSQC and HMBC experiments and by mass spectrometry.

View Article and Find Full Text PDF

Numerous studies have reported interesting properties of trans-resveratrol, a phytoalexin, as a preventive agent of several important pathologies: vascular diseases, cancers, viral infections, and neurodegenerative processes. These beneficial effects of resveratrol have been supported by observations at the cellular and molecular levels in both cellular and in vivo models, but the cellular fate of resveratrol remains unclear. We suggest here that resveratrol uptake, metabolism, and stability of the parent molecule could influence the biological effects of resveratrol.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is an instructive model for the human demyelinating disease multiple sclerosis. Lewis (LEW) rats immunized with myelin-basic protein (MBP) develop EAE characterized by a single episode of paralysis, from which they recover spontaneously and become refractory to a second induction of disease. LF 15-0195 is a novel molecule that has potent immunosuppressive effects in several immune-mediated pathological manifestations, including EAE.

View Article and Find Full Text PDF

Objective: Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma plays beneficial roles in cardiovascular disorders such as atherosclerosis and heart reperfusion. Although PPARalpha and gamma have been documented to reduce oxidative stress in the vasculature and the heart, the role of PPARdelta remains poorly studied.

Methods And Results: We focused on PPARdelta function in the regulation of oxidative stress-induced apoptosis in the rat cardiomyoblast cell line H9c2.

View Article and Find Full Text PDF

Background: LF 15-0195 (LF) is a new analogue of 15-deoxyspergualin (DSG) that is less toxic and more potent than DSG. The present study was undertaken to determine (1). the dose response of LF monotherapy, (2).

View Article and Find Full Text PDF

Tresperimus, an analogue of 15-deoxyspergualine (15-DSG), has been found, in rodents, to induce a potent state of tolerance after organ and bone marrow allografts. In a previous study, we have reported that tresperimus at the optimal concentration of 0.5 microgram/ml supports the clonogenic potential of human cord blood CD34+ cells.

View Article and Find Full Text PDF

Searching for a novel immunosuppressive agent to effectively prevent acute vascular rejection (AVR) is essential for success in clinical xenotransplantation. We previously reported that Lewis rat hearts transplanted into BALB/c mice developed typical AVR in 6 days. The present study was undertaken to determine the efficacy of LF 15-0195, a new immunosuppressive analog of 15-deoxyspergualin in the prevention of AVR in a rat-to-mouse cardiac xenograft model.

View Article and Find Full Text PDF

Background: We previously reported that Lewis rat hearts transplanted into BALB/c mice developed typical acute vascular rejection (AVR). The present study was undertaken to determine the efficacy of LF15-0195, a new analogue of 15-deoxyspergualin, in the prevention of AVR and to determine whether a combination of LF15-0195 and CD45RB monoclonal antibody (mAb) would have a synergistic effect in prolonging xenograft survival.

Methods: We transplanted 2-week-old Lewis rat hearts into BALB/c mice, followed by experimental immunosuppressive regimens.

View Article and Find Full Text PDF

Objectives: LF 15-0195 is an immunosuppressive agent obtained by organic synthesis, currently under clinical development for the treatment of vasculitis. We define the effects of LF 15-0195 in the murine collagen-induced arthritis (CIA) model, an experimental model of human rheumatoid arthritis.

Methods: In our model, CIA was elicited in DBA/1 mice by immunization with bovine type II collagen (CII) in Freund's complete adjuvant, followed by a repeat injection 21 days later.

View Article and Find Full Text PDF