Publications by authors named "Dustin Trail"

Constraining the lithological diversity and tectonics of the earliest Earth is critical to understanding our planet's evolution. Here we use detrital Jack Hills zircon (3.7 - 4.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates high-temperature fluids in the early Earth, which are important for understanding the origin of life.
  • These fluids acted as a key link between Earth's interior and surface environments, including hydrothermal pools.
  • By analyzing ancient zircon chemistry, the research reveals that these fluids were more oxidized than today's mantle, possibly aiding in the development of prebiotic molecules and supporting microbial life.
View Article and Find Full Text PDF

The Prebiotic Chemistry and Early Earth Environments (PCE) Consortium is a community of researchers seeking to understand the origins of life on Earth and in the universe. PCE is one of five Research Coordination Networks (RCNs) within NASA's Astrobiology Program. Here we report on the inaugural PCE workshop, intended to cross-pollinate, transfer information, promote cooperation, break down disciplinary barriers, identify new directions, and foster collaborations.

View Article and Find Full Text PDF

Hydrosphere interactions and alteration of the terrestrial crust likely played a critical role in shaping Earth's surface, and in promoting prebiotic reactions leading to life, before 4.03 Ga (the Hadean Eon). The identity of aqueously altered material strongly depends on lithospheric cycling of abundant and water-soluble elements such as Si and O.

View Article and Find Full Text PDF

Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life.

View Article and Find Full Text PDF

Granitoids are silicic rocks that make up the majority of the continental crust, but different models arise for the origins of these rocks. One classification scheme defines different granitoid types on the basis of materials involved in the melting/crystallization process. In this end-member case, granitoids may be derived from melting of a preexisting igneous rock, while other granitoids, by contrast, are formed or influenced by melting of buried sedimentary material.

View Article and Find Full Text PDF

Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4).

View Article and Find Full Text PDF