Bilateral activation in motor cortex is observed during paretic hand performance after stroke; however the functional significance of contralesional motor cortex (C-M1) activation is highly debated. Particularly, it is not known if task characteristics such as dexterity influence the causal engagement of C-M1 during paretic hand performance. Transcranial magnetic stimulation (TMS) was used to quantify motor corticospinal physiology of the CM1 projecting to the contralateral resting extensor carpi radialis brevis (ECRB) and first dorsal interosseous (FDI) while eleven participants with unilateral stroke performed unimanual tasks of differing dexterity with their paretic hand.
View Article and Find Full Text PDFObjective: Given the presence of execution deficits after stroke, it is difficult to determine if patients with stroke have deficits in motor skill learning with the paretic arm. Here, we controlled for execution deficits while testing practice effects of the paretic arm on motor skill learning, long-term retention, and corticospinal excitability.
Methods: Ten patients with unilateral stroke and ten age-matched controls practiced a kinematic arm skill for two days and returned for retention testing one-day and one-month post-practice.