Medical device companies and regulatory bodies rely on a nondestructive bacterial sampling technique specified by the American Society for Testing and Materials (ASTM E1173-15) to test preoperative skin preparations (PSPs). Despite the widespread use of PSPs, opportunistic skin-flora pathogens remain the most significant contributor to surgical site infections, suggesting that the ASTM testing standard may be underreporting true dermal bioburden. We hypothesized that ASTM E1173-15 may fail to capture deep skin-dwelling flora.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2024
Battlefield wounds are at high risk of infection due to gross contamination and delays in evacuation from forward-deployed locations. The aim of this study was to formulate an antibiotic wound gel for application by a field medic in austere environments to protect traumatic wounds from infection during transport. Formulation development was conducted over multiple phases to meet temperature, handling, in vitro elution, and in vivo tissue response requirements.
View Article and Find Full Text PDFTraumatic heterotopic ossification (HO) is frequently observed in Service Members following combat-related trauma. Estimates suggest that ~65% of wounded warriors who suffer limb loss or major extremity trauma will experience some type of HO formation. The development of HO delays rehabilitation and can prevent the use of a prosthetic.
View Article and Find Full Text PDFImplementation of negative pressure wound therapy (NPWT) as a standard of care has proven efficacious in reducing both the healing time and likelihood of nosocomial infection among pressure ulcers and traumatic, combat-related injuries. However, current formulations may not target or dramatically reduce bacterial biofilm burden following therapy. The purpose of this study was to determine the antibiofilm efficacy of an open-cell polyurethane (PU) foam (V.
View Article and Find Full Text PDFBackground: Bacterial biofilms readily develop on all medical implants, including percutaneous osseointegrated (OI) implants. With the growing rate of antibiotic resistance, exploring alternative options for managing biofilm-related infections is necessary. Antimicrobial blue light (aBL) is a unique therapy that can potentially manage biofilm-related infections at the skin-implant interface of OI implants.
View Article and Find Full Text PDFProsthetic joint infection (PJI) is a rare but devastating complication of joint arthroplasty. Biofilm formation around the prosthesis confers tolerance to antibiotics so that treatment is challenging. Most animal models of PJI use planktonic bacteria to establish the infection which fails to reproduce the pathology of chronic infection.
View Article and Find Full Text PDFThe rise in antibiotic resistance has stimulated research into adjuvants that can improve the efficacy of broad-spectrum antibiotics. Lactoferrin is a candidate adjuvant; it is a multifunctional iron-binding protein with antimicrobial properties. It is known to show dose-dependent antimicrobial activity against Staphylococcus aureus through iron sequestration and repression of β-lactamase expression.
View Article and Find Full Text PDFClinical preoperative skin preparations (PSPs) do not eradicate skin flora dwelling in the deepest dermal regions. Survivors constitute a persistent infection risk. In search of solutions, we created a porcine model intended for PSP developmental testing.
View Article and Find Full Text PDFNegative-pressure wound therapy (NPWT) is commonly utilized to treat traumatic injuries sustained on the modern battlefield. However, NPWT has failed to decrease the incidence of deep tissue infections experienced by Wounded Warriors, despite attempts to integrate common antimicrobials, like Ag+ nanoparticles, into the wound dressing. The purpose of this study was to incorporate a unique antibiofilm compound (CZ-01179) into the polyurethane matrix of NPWT foam via lyophilized hydrogel scaffolding.
View Article and Find Full Text PDFJ Am Acad Orthop Surg Glob Res Rev
November 2021
Prosthetics increase the risk of deep surgical site infections in procedures intended to restore function. In orthopaedics, prosthetic joint infections can lead to repetitive surgeries, amputation, or worse. Biofilm formation both in vitro and in vivo involves stages of attachment, accumulation, and maturation.
View Article and Find Full Text PDFPeriprosthetic joint infection (PJI) is a devastating complication of orthopedic implant surgeries, such as total knee and hip arthroplasties. Treatment requires additional surgeries because antibiotics have limited efficacy due to biofilm formation and resistant bacterial strains such as methicillin-resistant Staphylococcus aureus (MRSA). A non-pharmaceutical approach is needed, and examples of this are found in nature; dragonfly and cicada wings are antibacterial because of their nanopillar surface structure rather than their chemistry.
View Article and Find Full Text PDFHeterotopic ossification (HO) refers to ectopic bone formation, typically in residual limbs following trauma and injury. A review of injuries from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) indicated that approximately 70% of war wounds involved the musculoskeletal system, largely in part from the use of improvised explosive devices (IED) and rocket-propelled grenades (RPG). HO is reported to occur in approximately 63%-65% of wounded warriors from OIF and OEF.
View Article and Find Full Text PDFThe literature demonstrates that obtaining a biopsy of the physis may be beneficial for diagnostic purposes. A small biopsy of the epiphyseal plate may allow for earlier detection of certain conditions and be used to monitor the healing of diseased and/or damaged physes. However, due to the fear of a growth arrest in a growing child, biopsies are not currently performed.
View Article and Find Full Text PDFEstrogen deficiency has been shown to negatively influence rotator cuff tendon healing. Therefore, the addition of an estrogen-like-compound (ELC) in a nonestrogen-deficient animal may improve the quality of a rotator cuff repair. The purpose of this study was to evaluate the effects of an ELC, diethylstilbestrol (DES), on tendon healing in a murine rotator cuff repair model.
View Article and Find Full Text PDFWounds complicated by biofilms challenge even the best clinical care and can delay a return to duty for service members. A major component of treatment in wounded warriors includes infected wound management. Yet, all antibiotic therapy options have been optimized against planktonic bacteria, leaving an important gap in biofilm-related wound care.
View Article and Find Full Text PDFBackground: Bacterial biofilms pose a challenge in treating implant-associated infections. Biofilms provide bacteria with protection against antimicrobial agents and the immune response and often are invisible to the naked eye. As a biofilm-disclosing agent, methylene blue (MB) has shown promise, but lacks rigorous in vitro evaluation.
View Article and Find Full Text PDFBiofilm-impaired tissue is a significant factor in chronic wounds such as diabetic foot ulcers. Most, if not all, anti-biotics in clinical use have been optimized against planktonic phenotypes. In this study, an in vitro assessment was performed to determine the potential efficacy of a first-in-class series of antibiofilm antibiotics and compare outcomes to current clinical standards of care.
View Article and Find Full Text PDFCase: We present a case report documenting the retrieval and histological analysis of a porous tantalum (P-Ta) total ankle replacement (TAR) from a 50-year-old woman after a below-knee transtibial amputation. This rare opportunity to examine an intact TAR may help to better understand the implant-bone relationship because it would be in situ.
Conclusion: In this case study, we demonstrate bone ingrowth to the first layer of the P-Ta and organized trabecular orientation, suggesting that equal bone load was achieved on the base and the rails in both components using a transfibular surgical approach.
Obtaining a biopsy of the physis in a pediatric/juvenile could provide the ability to diagnose and manage children with physeal abnormalities. However, it has not yet been determined whether a physeal biopsy procedure affects angular deformity. We employed a rabbit model to collect biopsies of the distal femoral and proximal tibial physes on anesthetized, 8-week old New Zealand rabbits.
View Article and Find Full Text PDFBiofilm formation is a dynamic process that leads to mature communities over time. Despite a general knowledge of biofilm community formation and the resultant limitations of antibiotic therapy, there is a paucity of data describing specific plume heights, surface coverage and rates of maturation. Furthermore, little is published on the effect that the broth medium might have on the degree of biofilm maturation.
View Article and Find Full Text PDFThe CDC biofilm reactor is a robust culture system with high reproducibility in which biofilms can be grown for a wide variety of analyses. Multiple material types are available as growth substrates, yet data from biofilms grown on biologically relevant materials is scarce, particularly for antibiotic efficacy against differentially supported biofilms. In this study, CDC reactor holders were modified to allow growth of biofilms on collagen, a biologically relevant substrate.
View Article and Find Full Text PDFBackground: Heterotopic ossification (HO) is a significant complication for wounded warriors with traumatic limb loss. Although this pathologic condition negatively impacts the general population, ectopic bone has been observed with higher frequency for service members injured in Iraq and Afghanistan due to blast injuries. Several factors, including a traumatic insult, bioburden, tourniquet and wound vacuum usage, and bone fractures or fragments have been associated with increased HO for service members.
View Article and Find Full Text PDFBiofilm-related infection is among the worst complication to prosthetic joint replacement procedures; once established on the implant surface, biofilms show strong recalcitrance to clinical antibiotic therapy, frequently requiring costly revision procedures and prolonged systemic antibiotics for their removal. A well-designed active release coating might assist host immunity in clearing bacterial contaminants within the narrow perioperative window and ultimately prevent microbial colonization of the joint prosthesis. A first-in-class compound (CZ-01127) was tested as the active release agent in a silicone (Si) coating using an in vitro dynamic flow model of surgical site contamination and compared with analogous coatings containing clinical gold-standard antibiotics vancomycin and gentamicin; the CZ-01127 coating outperformed both vancomycin and gentamicin coatings and was the only to decrease the methicillin-resistant Staphylococcus aureus (MRSA) inocula below detectable limits for the first 3 days.
View Article and Find Full Text PDF