Background –: Suture anchor failures can lead to revision surgeries which are costly and burdensome for patients. The durability of musculoskeletal reconstructions is therefore partly affected by the design of the suture anchors.
Purpose –: The purpose of the study was to quantify the strength of different suture anchors whose sizes are suitable for attaching artificial Achilles and tibialis cranialis tendons in a rabbit model, as well as determine the effect of cyclic loading on the anchoring strength.
Objective: The purpose of this study was to investigate the factors associated with outcomes of attaching artificial tendons to bone using suture anchors for replacement of biological tendons in rabbits.
Study Design: Metal suture anchors with braided composite sutures of varying sizes (USP #1, #2, or #5) were used to secure artificial tendons replacing both the Achilles and tibialis cranialis tendons in 12 New Zealand White rabbits. Artificial tendons were implanted either at the time of (immediate replacement, n=8), or four weeks after (delayed replacement, n=4) resection of the biological tendon.
Background: Artificial tendons may be an effective alternative to autologous and allogenic tendon grafts for repairing critically sized tendon defects. The goal of this study was to quantify the in vivo hindlimb biomechanics (ground contact pressure and sagittal-plane motion) during hopping gait of rabbits having a critically sized tendon defect of the tibialis cranialis and either with or without repair using an artificial tendon.
Methods: In five rabbits, the tibialis cranialis tendon of the left hindlimb was surgically replaced with a polyester, silicone-coated artificial tendon (PET-SI); five operated control rabbits underwent complete surgical excision of the biological tibialis cranialis tendon in the left hindlimb with no replacement (TE).
Artificial tendons may be valuable clinical devices for replacing damaged or missing biological tendons. In this preliminary study, we quantified the effect of polyester-suture-based artificial tendons on movement biomechanics. New Zealand White rabbits underwent surgical replacement of either the Achilles (n = 2) or tibialis cranialis (TC, n = 2) biological tendons with artificial tendons.
View Article and Find Full Text PDFProsthetic limbs that are completely implanted within skin (i.e., endoprostheses) could permit direct, physical muscle-prosthesis attachment to restore more natural sensorimotor function to people with amputation.
View Article and Find Full Text PDFMechanically passive exoskeletons may be a practical and affordable solution to meet a growing clinical need for continuous, home-based movement assistance. We designed, fabricated, and preliminarily evaluated the performance of a wearable, passive, cam-driven shoulder exoskeleton (WPCSE) prototype. The novel feature of the WPCSE is a modular spring-cam-wheel module, which generates an assistive force that can be customized to compensate for any proportion of the shoulder elevation moment due to gravity.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
The objective of our study was to demonstrate how the intact human hand can be used as a benchmark for electromyogram (EMG)-based myoelectric control of robotic interfaces (e.g., myoelectric prostheses).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
The human neuro-musculoskeletal system constantly deploys passive (e.g., posture adjustment) and active (e.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Many biomedical robotic interfaces (e.g., prostheses, exoskeletons) classify or estimate user movement intent based on features extracted from measured electromyograms (EMG).
View Article and Find Full Text PDFPrevious prostheses for replacing a missing limb following amputation must be worn externally on the body. This limits the extent to which prostheses could physically interface with biological tissues, such as muscles, to enhance functional recovery. The objectives of our study were to (1) test the feasibility of implanting a limb prosthesis, or endoprosthesis, entirely within living skin at the distal end of a residual limb, and (2) identify effective surgical and post-surgical care approaches for implanting endoprostheses in a rabbit model of hindlimb amputation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Wearable, mechanically passive (i.e. spring-powered) exoskeletons may be more practical and affordable than active, motorized exoskeletons for providing continuous, home-based, antigravity movement assistance for people with shoulder disability.
View Article and Find Full Text PDFPassive shoulder exoskeletons, which provide continuous anti-gravitational force at the shoulder, could assist with dynamic shoulder elevation movements involved in activities of daily living and rehabilitation exercises. However, prior biomechanical studies of these exoskeletons primarily focused on static overhead tasks. In this study, we evaluated how continuous passive anti-gravity assistance affects able-bodied neuromuscular activity and shoulder kinematics during dynamic and static phases of shoulder elevation movements.
View Article and Find Full Text PDFWearable passive (ie, spring powered) shoulder exoskeletons could reduce muscle output during motor tasks to help prevent or treat shoulder musculoskeletal disorders. However, most wearable passive shoulder exoskeletons have been designed and evaluated for static tasks, so it is unclear how they affect muscle output during dynamic tasks. The authors used a musculoskeletal model and Computed Muscle Control optimization to estimate muscle output with and without a wearable passive shoulder exoskeleton during 2 simulated dynamic tasks: abduction and upward reach.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
October 2019
Electromyography (EMG)-based interfaces are trending toward continuous, simultaneous control with multiple degrees of freedom. Emerging methods range from data-driven approaches to biomechanical model-based methods. However, there has been no direct comparison between these two types of continuous EMG-based interfaces.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2018
Simultaneous and proportional control (SPC) of neural-machine interfaces uses magnitudes of smoothed electromyograms (EMG) as control inputs. Though surface EMG (sEMG) electrodes are common for clinical neural-machine interfaces, intramuscular EMG (iEMG) electrodes may be indicated in some circumstances (e.g.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
May 2018
This study aimed to develop a novel electromyography (EMG)-based neural-machine interface (NMI) that is user-generic for continuously predicting coordinated motion between metacarpophalangeal (MCP) and wrist flexion/extension. The NMI requires a minimum calibration procedure that only involves capturing maximal voluntary muscle contraction for the monitored muscles for individual users. At the center of the NMI is a user-generic musculoskeletal model based on the experimental data collected from 6 able-bodied (AB) subjects and 9 different upper limb postures.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
July 2018
This paper aimed to develop a novel electromyography (EMG)-based neural-machine interface (NMI) that is user-generic for continuously predicting coordinated motion betweenmuscle contractionmetacarpophalangeal (MCP) and wrist flexion/extension. The NMI requires a minimum calibration procedure that only involves capturing maximal voluntary muscle contraction for themonitoredmuscles for individual users. At the center of the NMI is a user-generic musculoskeletal model based on the experimental data collected from six able-bodied (AB) subjects and nine different upper limb postures.
View Article and Find Full Text PDFBackground: Although electromyogram (EMG) pattern recognition (PR) for multifunctional upper limb prosthesis control has been reported for decades, the clinical benefits have rarely been examined. The study purposes were to: 1) compare self-report and performance outcomes of a transradial amputee immediately after training and one week after training of direct myoelectric control and EMG pattern recognition (PR) for a two-degree-of-freedom (DOF) prosthesis, and 2) examine the change in outcomes one week after pattern recognition training and the rate of skill acquisition in two subjects with transradial amputations.
Methods: In this cross-over study, participants were randomized to receive either PR control or direct control (DC) training of a 2 DOF myoelectric prosthesis first.
Importance: The human patient simulators that are currently used in multidisciplinary operating room team training scenarios cannot simulate surgical tasks because they lack a realistic surgical anatomy. Thus, they eliminate the surgeon's primary task in the operating room. The surgical trainee is presented with a significant barrier when he or she attempts to suspend disbelief and engage in the scenario.
View Article and Find Full Text PDFObjective: We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task.
Approach: A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand.
Simple, lumped-parameter musculoskeletal models may be more adaptable and practical for clinical real-time control applications, such as prosthesis control. In this study, we determined whether a lumped-parameter, EMG-driven musculoskeletal model with four muscles could predict wrist and metacarpophalangeal (MCP) joint flexion/extension. Forearm EMG signals and joint kinematics were collected simultaneously from 5 able-bodied (AB) subjects.
View Article and Find Full Text PDFWe evaluated whether subjects with brachial plexus injury (BPI) adapted their movements to reduce the mechanical demand on their impaired upper extremity. In 6 subjects with unilateral BPI with C5 and C6 involvement, we measured bilateral maximum isometric shoulder and elbow strength, and computed joint kinematics and net muscle-generated joint moments during 7 unimanual functional tasks. Compared to the unimpaired extremity, maximum strength in shoulder abduction, extension, and external rotation was 60% (p=0.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Electromyography (EMG)-driven human-machine systems permit volitional control of external devices, including powered prosthetic arms. However, current control schemes are either non-intuitive to operate or lack robustness across different arm postures and dynamics, partly because these methods did not incorporate the full knowledge of biological movement production. In this study, we developed and evaluated a new musculoskeletal model to predict hand and wrist motion based on surface EMG signals.
View Article and Find Full Text PDF