A laser pulse composed of a fundamental and an appropriately phased second harmonic can drive a time-dependent current of photoionized electrons that generates broadband THz radiation. Over the propagation distances relevant to many experiments, dispersion causes the relative phase between the harmonics to evolve. This "dephasing" slows the accumulation of THz energy and results in a multi-cycle THz pulse with significant angular dispersion.
View Article and Find Full Text PDFLaser wakefield accelerators (LWFAs) have electric fields that are orders of magnitude larger than those of conventional accelerators, promising an attractive, small-scale alternative for next-generation light sources and lepton colliders. The maximum energy gain in a single-stage LWFA is limited by dephasing, which occurs when the trapped particles outrun the accelerating phase of the wakefield. Here, we demonstrate that a single space-time structured laser pulse can be used for ionization injection and electron acceleration over many dephasing lengths in the bubble regime.
View Article and Find Full Text PDFBeam spray measurements suggest thresholds that are a factor of ≈2 to 15× less than expected based on the filamentation figure of merit often quoted in the literature. In this moderate-intensity regime, the relevant mechanism is forward stimulated Brillouin scattering. Both weak ion acoustic wave damping and thermal enhancement of ion acoustic waves contribute to the low thresholds.
View Article and Find Full Text PDFSpatiotemporal pulse shaping provides control over the trajectory and range of an intensity peak. While this control can enhance laser-based applications, the optical configurations required for shaping the pulse can constrain the transverse or temporal profile, duration, or orbital angular momentum (OAM). Here we present a novel technique for spatiotemporal control that mitigates these constraints by using a "stencil" pulse to spatiotemporally structure a second, primary pulse through cross-phase modulation (XPM) in a Kerr lens.
View Article and Find Full Text PDFIn conventional gases and plasmas, it is known that heat fluxes are proportional to temperature gradients, with collisions between particles mediating energy flow from hotter to colder regions and the coefficient of thermal conduction given by Spitzer's theory. However, this theory breaks down in magnetized, turbulent, weakly collisional plasmas, although modifications are difficult to predict from first principles due to the complex, multiscale nature of the problem. Understanding heat transport is important in astrophysical plasmas such as those in galaxy clusters, where observed temperature profiles are explicable only in the presence of a strong suppression of heat conduction compared to Spitzer's theory.
View Article and Find Full Text PDFUnderstanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas ([Formula: see text]). However, the same framework proposes that the fluctuation dynamo should operate differently when [Formula: see text], the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters.
View Article and Find Full Text PDFSpatiotemporal control over the intensity of a laser pulse has the potential to enable or revolutionize a wide range of laser-based applications that currently suffer from the poor flexibility offered by conventional optics. Specifically, these optics limit the region of high intensity to the Rayleigh range and provide little to no control over the trajectory of the peak intensity. Here, we introduce a nonlinear technique for spatiotemporal control, the "self-flying focus," that produces an arbitrary trajectory intensity peak that can be sustained for distances comparable to the focal length.
View Article and Find Full Text PDFLarge diameter, flying focus driven ionization waves of arbitrary velocity (IWAV's) were produced by a defocused laser beam in a hydrogen gas jet, and their spatial and temporal electron density characteristics were measured using a novel, spectrally resolved interferometry diagnostic. A simple analytic model predicts the effects of power spectrum non-uniformity on the IWAV trajectory and transverse profile. This model compares well with the measured data and suggests that spectral shaping can be used to customize IWAV behavior and increase controlled propagation of ionization fronts for plasma-photonics applications.
View Article and Find Full Text PDFPlasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case.
View Article and Find Full Text PDFA calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a millijoule-class laser onto the diagnostic to allow the in situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the second and third harmonics of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated.
View Article and Find Full Text PDF