Introduction: Lafora disease (LD) is an ultrarare fatal progressive myoclonic epilepsy, causing drug-resistant epilepsy, myoclonus and psychomotor deterioration. LD is caused by mutations in EPM2A or NHLRC1, which lead to the accumulation of polyglucosans in the brain and neurodegeneration. There are no approved treatments for LD.
View Article and Find Full Text PDFAnticoagulation management in pediatric extracorporeal membrane oxygenation (ECMO) is challenging with multiple laboratory measures utilized across institutions without consensus guidelines. These include partial thromboplastin time (PTT), thromboelastography (TEG), and antifactor Xa (aXa). We aimed to evaluate the consistency of TEG R-time, PTT, and aXa correlation to bivalirudin and heparin dosing.
View Article and Find Full Text PDFAntibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus. Previous studies have indicated that the phosphodiester backbone is the main antigenic target, with electrostatic interactions important for high avidity. To define further these interactions, the effects of ionic strength on anti-DNA binding of SLE plasmas were assessed in association and dissociation assays by ELISA.
View Article and Find Full Text PDFGlycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis.
View Article and Find Full Text PDFLafora disease (LD) is both a fatal childhood epilepsy and a glycogen storage disease caused by recessive mutations in either the Epilepsy progressive myoclonus 2A (EPM2A) or EPM2B genes. Hallmarks of LD are aberrant, cytoplasmic carbohydrate aggregates called Lafora bodies (LBs) that are a disease driver. The 5th International Lafora Epilepsy Workshop was recently held in Alcala de Henares, Spain.
View Article and Find Full Text PDFThe use of antibodies as targeting molecules or cell-penetrating tools has emerged at the forefront of pharmaceutical research. Antibody-directed therapies in the form of antibody-drug conjugates, immune modulators, and antibody-directed enzyme prodrugs have been most extensively utilized as hematological, rheumatological, and oncological therapies, but recent developments are identifying additional applications of antibody-mediated delivery systems. A novel application of this technology is for the treatment of glycogen storage disorders (GSDs) via an antibody-enzyme fusion (AEF) platform to penetrate cells and deliver an enzyme to the cytoplasm, nucleus, and/or other organelles.
View Article and Find Full Text PDFLafora disease (LD) is a fatal juvenile epilepsy characterized by the accumulation of aberrant glucan aggregates called Lafora bodies (LBs). Delivery of protein-based therapeutics to the central nervous system (CNS) for the clearance of LBs remains a unique challenge in the field. Recently, a humanized antigen-binding fragment (hFab) derived from a murine systemic lupus erythematosus DNA autoantibody (3E10) has been shown to mediate cell penetration and proposed as a broadly applicable carrier to mediate cellular targeting and uptake.
View Article and Find Full Text PDFUnlabelled: Pompe disease is characterized by accumulation of both lysosomal and cytoplasmic glycogen primarily in skeletal and cardiac muscles. Mannose-6-phosphate receptor-mediated enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) targets the enzyme to lysosomes and thus is unable to digest cytoplasmic glycogen. Studies have shown that anti-DNA antibody 3E10 penetrates living cells and delivers "cargo" proteins to the cytosol or nucleus via equilibrative nucleoside transporter ENT2.
View Article and Find Full Text PDFNo effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
July 2006
Expression of beta-catenin is known to be important for developmental processes such as embryonic pattern formation and determination of cell fate. Inappropriate expression, however, has been linked to pathological states such as cancer. Here we report that expression of beta-catenin is necessary for physiological growth of skeletal muscle in response to mechanical overload.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2005
Beta-catenin is a transcriptional activator shown to regulate the embryonic, postnatal, and oncogenic growth of many tissues. In most research to date, beta-catenin activation has been the unique downstream function of the Wnt signaling pathway. However, in the heart, a Wnt-independent mechanism involving Akt-mediated phosphorylation of glycogen synthase kinase (GSK)-3beta was recently shown to activate beta-catenin and regulate cardiomyocyte growth.
View Article and Find Full Text PDFSeveral lines of evidence suggest that muscle cells can distinguish between specific mechanical stimuli. To test this concept, we subjected C(2)C(12) myotubes to cyclic uniaxial or multiaxial stretch. Both types of stretch induced an increase in extracellular signal-regulated kinase (ERK) and protein kinase B (PKB/Akt) phosphorylation, but only multiaxial stretch induced ribosomal S6 kinase (p70(S6k)) phosphorylation.
View Article and Find Full Text PDFDietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec).
View Article and Find Full Text PDF