Background: The RNA-binding protein Quaking (QKI) increases during epithelial-to-mesenchymal transition and its expression is controlled by microRNA-200 family members. Here, we aimed to describe the expression of QKI in the developing lungs of control and nitrofen-induced congenital diaphragmatic hernia lungs (CDH).
Methods: To investigate the expression of QKI, we dissected lungs from control and nitrofen-induced CDH rats on embryonic day 15, 18, 21 (E15, E18, E21).
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
April 2021
RNA-binding proteins (RBPs) form complexes with RNA, changing how the RNA is processed and thereby regulating gene expression. RBPs are important sources of gene regulation during organogenesis, including the development of lungs. The RBP called Quaking (QK) is critical for embryogenesis, yet it has not been studied in the developing lung.
View Article and Find Full Text PDFmiR-200b plays a role in epithelial-to-mesenchymal transition (EMT) in cancer. We recently reported abnormal expression of miR-200b in the context of human pulmonary hypoplasia in congenital diaphragmatic hernia (CDH). Smaller lung size, a lower number of airway generations, and a thicker mesenchyme characterize pulmonary hypoplasia in CDH.
View Article and Find Full Text PDFThe outcomes of patients diagnosed with congenital diaphragmatic hernia (CDH) have recently improved. However, mortality and morbidity remain high, and this is primarily caused by the abnormal lung development resulting in pulmonary hypoplasia and persistent pulmonary hypertension. The pathogenesis of CDH is poorly understood, despite the identification of certain candidate genes disrupting normal diaphragm and lung morphogenesis in animal models of CDH.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small (∼22 nucleotides), non-coding RNA molecules that regulate gene expression post-transcriptionally by inhibiting target mRNAs. Research into the roles of miRNAs in lung development and disease is at the early stages. In this review, we discuss the role of miRNAs in pediatric respiratory disease, including cystic fibrosis, asthma, and bronchopulmonary dysplasia.
View Article and Find Full Text PDF