Publications by authors named "Dustin A Ammendolia"

Neutrophils are essential for host defense against (). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular more efficiently.

View Article and Find Full Text PDF
Article Synopsis
  • Cell growth depends on special signals called insulin and IGF1, which help cells multiply.
  • Researchers found 40 proteins that interact with a key player in this process named IRS1, including one called DCAF7.
  • When they reduced DCAF7 in cells, it stopped them from growing properly by causing them to get stuck in a certain phase of the cell cycle (G2), and also changed the location of a protein called FOXO1 that affects cell growth.
View Article and Find Full Text PDF

The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection.

View Article and Find Full Text PDF

Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity.

View Article and Find Full Text PDF

Plasma membrane integrity is essential for the viability of eukaryotic cells. In response to bacterial pore-forming toxins, disrupted regions of the membrane are rapidly repaired. However, the pathways that mediate plasma membrane repair are unclear.

View Article and Find Full Text PDF

Background: Single-cell genomic methods now provide unprecedented resolution for characterizing the component cell types and states of tissues such as the epithelial subsets of the gastrointestinal tract. Nevertheless, functional studies of these subsets at scale require faithful in vitro models of identified in vivo biology. While intestinal organoids have been invaluable in providing mechanistic insights in vitro, the extent to which organoid-derived cell types recapitulate their in vivo counterparts remains formally untested, with no systematic approach for improving model fidelity.

View Article and Find Full Text PDF

is a facultative intracellular bacterial pathogen that is frequently associated with food-borne infection. Of particular concern is the ability of to breach the blood-brain barrier, leading to life-threatening meningitis and encephalitis. The mechanisms used by bacterial pathogens to infect the brain are not fully understood.

View Article and Find Full Text PDF

We have previously shown that in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-elicited NAFLD progression, central carbon, glutaminolysis, and serine/folate metabolism are reprogrammed to support NADPH production and ROS defenses. To further investigate underlying dose-dependent responses associated with TCDD-induced fibrosis, female C57BL/6 mice were gavaged with TCDD every 4 days (d) for 28 d or 92 d. RNA-Seq, ChIP-Seq (2 h), and 28 d metabolomic (urine, serum, and hepatic extract) analyses were conducted with complementary serum marker assessments at 92 d.

View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor agonist that elicits dose-dependent hepatic fat accumulation and inflammation that can progress to steatohepatitis. To investigate intestine-liver interactions that contribute to TCDD-elicited steatohepatitis, we examined the dose-dependent effects of TCDD (0.01, 0.

View Article and Find Full Text PDF

A cell line, WE-spleen6, has been developed from the stromal layer of primary spleen cell cultures. On conventional plastic, WE-spleen6 cells had a spindle-shaped morphology at low cell density but grew to become epithelial-like at confluency. On the commercial extracellular matrix (ECM), Matrigel, the cells remained spindle-shaped and formed lumen-like structures.

View Article and Find Full Text PDF