Temporal focusing two-photon microscopy has been utilized for high-resolution imaging of neuronal and synaptic structures across volumes spanning hundreds of microns in vivo. However, a limitation of temporal focusing is the rapid degradation of the signal-to-background ratio and resolution with increasing imaging depth. This degradation is due to scattered emission photons being widely distributed, resulting in a strong background.
View Article and Find Full Text PDFWith applications ranging from metabolomics to histopathology, quantitative phase microscopy (QPM) is a powerful label-free imaging modality. Despite significant advances in fast multiplexed imaging sensors and deep-learning-based inverse solvers, the throughput of QPM is currently limited by the pixel-rate of the image sensors. Complementarily, to improve throughput further, here we propose to acquire images in a compressed form so that more information can be transferred beyond the existing hardware bottleneck of the image sensor.
View Article and Find Full Text PDFTemporal focusing two-photon microscopy enables high resolution imaging of fine structures over a large volume. A limitation of temporal focusing is that signal-to-background ratio and resolution degrade rapidly with increasing imaging depth. This degradation originates from the scattered emission photons are widely distributed resulting in a strong background.
View Article and Find Full Text PDFLimited throughput is a key challenge in in vivo deep tissue imaging using nonlinear optical microscopy. Point scanning multiphoton microscopy, the current gold standard, is slow especially compared to the widefield imaging modalities used for optically cleared or thin specimens. We recently introduced "De-scattering with Excitation Patterning" or "DEEP" as a widefield alternative to point-scanning geometries.
View Article and Find Full Text PDFToday the gold standard for imaging through scattering tissue is point-scanning two-photon microscopy (PSTPM). Especially in neuroscience, PSTPM is widely used for deep-tissue imaging in the brain. However, due to sequential scanning, PSTPM is slow.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is a major health threat worldwide and the culture-based bacterial detection methods are slow. Surface-enhanced Raman spectroscopy (SERS) can be used to identify target analytes in real time with sensitivity down to the single-molecule level, providing a promising solution for the culture-free bacterial detection. We report the fabrication of SERS substrates having tightly packed silver (Ag) nanoparticles loaded onto long silicon nanowires (Si NWs) grown by the metal-assisted chemical etching (MACE) method for the detection of bacteria.
View Article and Find Full Text PDFCurrent state-of-the-art infection and antimicrobial resistance (AMR) diagnostics are based on culture-based methods with a detection time of 48-96 h. Therefore, it is essential to develop novel methods that can do real-time diagnoses. Here, we demonstrate that the complimentary use of label-free optical assay with whole-genome sequencing (WGS) can enable rapid diagnosis of infection and AMR.
View Article and Find Full Text PDFNonlinear optical microscopy has enabled in vivo deep tissue imaging on the millimeter scale. A key unmet challenge is its limited throughput especially compared to rapid wide-field modalities that are used ubiquitously in thin specimens. Wide-field imaging methods in tissue specimens have found successes in optically cleared tissues and at shallower depths, but the scattering of emission photons in thick turbid samples severely degrades image quality at the camera.
View Article and Find Full Text PDFInflammation is a major risk factor for many types of cancer, including colorectal. There are two fundamentally different mechanisms by which inflammation can contribute to carcinogenesis. First, reactive oxygen and nitrogen species (RONS) can damage DNA to cause mutations that initiate cancer.
View Article and Find Full Text PDFHomologous recombination (HR) events are key drivers of cancer-promoting mutations, and the ability to visualize these events in situ provides important information regarding mutant cell type, location, and clonal expansion. We have previously created the Rosa26 Direct Repeat (RaDR) mouse model wherein HR at an integrated substrate gives rise to a fluorescent cell. To fully leverage this in situ approach, we need better ways to quantify rare fluorescent cells deep within tissues.
View Article and Find Full Text PDFImaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities.
View Article and Find Full Text PDFA high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth-resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination.
View Article and Find Full Text PDFHomologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues.
View Article and Find Full Text PDF