Publications by authors named "Dusanka Milenkovic"

CLPB is a mitochondrial intermembrane space AAA+ domain-containing disaggregase. CLPB mutations are associated with 3-methylglutaconic aciduria and neutropenia; however, the molecular mechanism underscoring disease and the contribution of CLPB substrates to disease pathology remains unknown. Interactions between CLPB and mitochondrial quality control (QC) factors, including PARL and OPA1, have been reported, hinting at dysregulation of organelle QC in disease.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created knockin mice with normal respiratory complex levels but reduced respirasome levels to study its role in living organisms.
  • * Surprisingly, these mice remained healthy and maintained normal energy levels and exercise capacity, suggesting that high levels of respirasomes may not be necessary for basic bioenergetics, while also prompting further investigation into their potential functions, like protein stability and aging.
View Article and Find Full Text PDF

Mitochondria are eukaryotic organelles of endosymbiotic origin that contain their own genetic material, mitochondrial DNA (mtDNA), and dedicated systems for mtDNA maintenance and expression. MtDNA molecules encode a limited number of proteins that are nevertheless all essential subunits of the mitochondrial oxidative phosphorylation system. Here, we describe protocols to monitor DNA and RNA synthesis in intact, isolated mitochondria.

View Article and Find Full Text PDF

The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) maintenance disorders are caused by mutations in ubiquitously expressed nuclear genes and lead to syndromes with variable disease severity and tissue-specific phenotypes. Loss of function mutations in the gene encoding the mitochondrial genome and maintenance exonuclease 1 (MGME1) result in deletions and depletion of mtDNA leading to adult-onset multisystem mitochondrial disease in humans. To better understand the in vivo function of MGME1 and the associated disease pathophysiology, we characterized a Mgme1 mouse knockout model by extensive phenotyping of ageing knockout animals.

View Article and Find Full Text PDF

Mitochondrial energy metabolism plays an important role in the pathophysiology of insulin resistance. Recently, a missense N437S variant was identified in the gene, which encodes a mitochondrial RNA processing enzyme within the RNase P complex, with predicted impact on metabolism. We used CRISPR-Cas9 genome editing to introduce this variant into the mouse gene and show that the variant causes insulin resistance on a high-fat diet.

View Article and Find Full Text PDF

We report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis. In the absence of mtSSB, transcription from LSP is strongly up-regulated, but no replication primers are formed.

View Article and Find Full Text PDF

Cytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. Here, we show that mtDNA-dependent immune signalling via the cyclic GMP-AMP synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS-STING-TBK1) pathway is under metabolic control and is induced by cellular pyrimidine deficiency. The mitochondrial protease YME1L preserves pyrimidine pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33.

View Article and Find Full Text PDF

Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy.

View Article and Find Full Text PDF

Mitochondria harbor specialized ribosomes (mitoribosomes) necessary for the synthesis of key membrane proteins of the oxidative phosphorylation (OXPHOS) machinery located in the mitochondrial inner membrane. To date, no animal model exists to study mitoribosome composition and mitochondrial translation coordination in mammals in vivo. Here, we create MitoRibo-Tag mice as a tool enabling affinity purification and proteomics analyses of mitoribosomes and their interactome in different tissues.

View Article and Find Full Text PDF

Regulation of replication and expression of mitochondrial DNA (mtDNA) is essential for cellular energy conversion via oxidative phosphorylation. The mitochondrial transcription elongation factor (TEFM) has been proposed to regulate the switch between transcription termination for replication primer formation and processive, near genome-length transcription for mtDNA gene expression. Here, we report that is essential for mouse embryogenesis and that levels of promoter-distal mitochondrial transcripts are drastically reduced in conditional -knockout hearts.

View Article and Find Full Text PDF

The regulation of mitochondrial RNA life cycles and their roles in ribosome biogenesis and energy metabolism are not fully understood. We used CRISPR/Cas9 to generate heart- and skeletal-muscle-specific knockout mice of the pentatricopeptide repeat domain protein 1, PTCD1, and show that its loss leads to severe cardiomyopathy and premature death. Our detailed transcriptome-wide and functional analyses of these mice enabled us to identify the molecular role of PTCD1 as a 16S rRNA-binding protein essential for its stability, pseudouridylation, and correct biogenesis of the mitochondrial large ribosomal subunit.

View Article and Find Full Text PDF

Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA.

View Article and Find Full Text PDF

Respiratory chain dysfunction plays an important role in human disease and aging. It is now well established that the individual respiratory complexes can be organized into supercomplexes, and structures for these macromolecular assemblies, determined by electron cryo-microscopy, have been described recently. Nevertheless, the reason why supercomplexes exist remains an enigma.

View Article and Find Full Text PDF

Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain.

View Article and Find Full Text PDF

Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication.

View Article and Find Full Text PDF

The regulation of mitochondrial RNA processing and its importance for ribosome biogenesis and energy metabolism are not clear. We generated conditional knockout mice of the endoribonuclease component of the RNase P complex, MRPP3, and report that it is essential for life and that heart and skeletal-muscle-specific knockout leads to severe cardiomyopathy, indicating that its activity is non-redundant. Transcriptome-wide parallel analyses of RNA ends (PARE) and RNA-seq enabled us to identify that in vivo 5' tRNA cleavage precedes 3' tRNA processing, and this is required for the correct biogenesis of the mitochondrial ribosomal subunits.

View Article and Find Full Text PDF

Recently, MGME1 was identified as a mitochondrial DNA nuclease with preference for single-stranded DNA (ssDNA) substrates. Loss-of-function mutations in patients lead to mitochondrial disease with DNA depletion, deletions, duplications and rearrangements. Here, we assess the biochemical role of MGME1 in the processing of flap intermediates during mitochondrial DNA replication using reconstituted systems.

View Article and Find Full Text PDF

The mitochondrial contact site and cristae organizing system (MICOS) complex is essential for normal mitochondria biogenesis and morphology. In this issue, Bohnert et al. (2015) and Barbot et al.

View Article and Find Full Text PDF

The organization of individual respiratory chain complexes into supercomplexes or respirasomes has attracted great interest because of the implications for cellular energy conversion. Recently, it was reported that commonly used mouse strains harbor a short COX7a2l (SCAFI) gene isoform that supposedly precludes the formation of complex IV-containing supercomplexes. This claim potentially has serious implications for numerous mouse studies addressing important topics in metabolism, including adaptation to space flights.

View Article and Find Full Text PDF

Replication of the mammalian mitochondrial DNA (mtDNA) is dependent on the minimal replisome, consisting of the heterotrimeric mtDNA polymerase (POLG), the hexameric DNA helicase TWINKLE and the tetrameric single-stranded DNA-binding protein (mtSSB). TWINKLE has been shown to unwind DNA during the replication process and many disease-causing mutations have been mapped to its gene. Patients carrying Twinkle mutations develop multiple deletions of mtDNA, deficient respiratory chain function and neuromuscular symptoms.

View Article and Find Full Text PDF

A genetic bottleneck explains the marked changes in mitochondrial DNA (mtDNA) heteroplasmy that are observed during the transmission of pathogenic mutations, but the precise timing of these changes remains controversial, and it is not clear whether selection has a role. These issues are important for the genetic counseling of prospective mothers and for the development of treatments aimed at disease prevention. By studying mice transmitting a heteroplasmic single-base-pair deletion in the mitochondrial tRNA(Met) gene, we show that the extent of mammalian mtDNA heteroplasmy is principally determined prenatally within the developing female germline.

View Article and Find Full Text PDF

The intermembrane space of mitochondria accommodates the essential mitochondrial intermembrane space assembly (MIA) machinery that catalyzes oxidative folding of proteins. The disulfide bond formation pathway is based on a relay of reactions involving disulfide transfer from the sulfhydryl oxidase Erv1 to Mia40 and from Mia40 to substrate proteins. However, the substrates of the MIA typically contain two disulfide bonds.

View Article and Find Full Text PDF

A variety of observations support the hypothesis that deficiency of complex I [reduced nicotinamide-adenine dinucleotide (NADH):ubiquinone oxidoreductase] of the mitochondrial respiratory chain plays a role in the pathophysiology of Parkinson's disease (PD). However, recent data from a study using mice with knockout of the complex I subunit NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4) has challenged this concept as these mice show degeneration of non-dopamine neurons. In addition, primary dopamine (DA) neurons derived from such mice, reported to lack complex I activity, remain sensitive to toxins believed to act through inhibition of complex I.

View Article and Find Full Text PDF