USP9X, is highly expressed in neural progenitors and, essential for neural development in mice. In humans, mutations in USP9X are associated with neurodevelopmental disorders. To understand USP9X's role in neural progenitors, we studied the effects of altering its expression in both the human neural progenitor cell line, ReNcell VM, as well as neural stem and progenitor cells derived from Nestin-cre conditionally deleted Usp9x mice.
View Article and Find Full Text PDFHarnessing the inherent biological relevance of natural products requires a method for the recognition of biological effects that may subsequently lead to the discovery of particular targets. An unbiased multidimensional profiling method was used to examine the activities of natural products on primary cells derived from a Parkinson's disease patient. The biological signature of 482 natural products was examined using multiparametric analysis to investigate known cellular pathways and organelles implicated in Parkinson's disease such as mitochondria, lysosomes, endosomes, apoptosis, and autophagy.
View Article and Find Full Text PDFDNA synthesis is a fundamental biological process central to all proliferating cells, and the design of small molecule probes that allow detection of this DNA is important for many applications. 5-Ethynyl-2'-deoxyuridine, known as EdU, has become a workhorse for metabolic labeling of DNA in mammalian cells, followed by bioconjugation to a small molecule fluorescent azide using copper-catalyzed azide-alkyne cycloaddition (CuAAC), click chemistry, to allow detection. In this study, we demonstrate that a cyclosal phosphotriester pronucleotide analog of EdU is suitable for metabolic incorporation into DNA of proliferating cells and subsequent labeling by CuAAC.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2013
The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis.
View Article and Find Full Text PDFThree new cyclic depsipeptides, neamphamides B (2), C (3), and D (4), were isolated from the Australian sponge Neamphius huxleyi. The planar structural characterization of these molecules was elucidated using 2D NMR experiments and ESI-FTICR-MS(n). Their configurations were determined by Marfey's method and J-based NMR analysis.
View Article and Find Full Text PDFFenestrations are transcellular pores in endothelial cells that facilitate transfer of substrates between blood and the extravascular compartment. In order to understand the regulation and formation of fenestrations, the relationship between membrane rafts and fenestrations was investigated in liver sinusoidal endothelial cells where fenestrations are grouped into sieve plates. Three dimensional structured illumination microscopy, scanning electron microscopy, internal reflectance fluorescence microscopy and two-photon fluorescence microscopy were used to study liver sinusoidal endothelial cells isolated from mice.
View Article and Find Full Text PDFA new glucoalkaloid, vespertilioside, together with three known alkaloids, including 11- β-methoxyglucoerysovine, erysotrine, and hypaphorine, were isolated from the fruits of E. vespertilio Benth. In addition, three known isoflavonoids, including phaseollin, alpiniumisoflavone, and phaseollidin, were identified from the plant stems.
View Article and Find Full Text PDFRetinitis pigmentosa (RP) is a heterogeneous group of genetic disorders leading to blindness, which remain untreatable at present. Rd1 mice represent a recognized model of RP, and so far only GDNF treatment provided a slight delay in the retinal degeneration in these mice. Bmi1, a transcriptional repressor, has recently been shown to be essential for neural stem cell (NSC) renewal in the brain, with an increased appearance of glial cells in vivo in Bmi1 knockout (Bmi1-/-) mice.
View Article and Find Full Text PDFThe polycomb transcriptional repressor Bmi1 promotes cell cycle progression, controls cell senescence, and is implicated in brain development. Loss of Bmi1 leads to a decreased brain size and causes progressive ataxia and epilepsy. Recently, Bmi1 was shown to control neural stem cell (NSC) renewal.
View Article and Find Full Text PDF