The dichroic macular pigment in the Henle fiber layer in the fovea enables humans to perceive entoptic phenomena when viewing polarized blue light. In the standard case of linearly polarized stimuli, a faint bowtie-like pattern known as the Haidinger's brush appears in the central point of fixation. As the shape and clarity of the perceived signal is directly related to the health of the macula, Haidinger's brush has been used as a diagnostic marker in studies of early stage macular degeneration and central field visual dysfunction.
View Article and Find Full Text PDFMethods of preparation and analysis of structured waves of light, electrons, and atoms have been advancing rapidly. Despite the proven power of neutrons for material characterization and studies of fundamental physics, neutron science has not been able to fully integrate these techniques because of small transverse coherence lengths, the relatively poor resolution of spatial detectors, and low fluence rates. Here, we demonstrate methods that are practical with the existing technologies and show the experimental achievement of neutron helical wavefronts that carry well-defined orbital angular momentum values.
View Article and Find Full Text PDFTopologically nontrivial spin textures host great promise for future spintronic applications. Skyrmions in particular are of burgeoning interest owing to their nanometric size, topological protection, and high mobility via ultra-low current densities. It has been previously reported through magnetic susceptibility, microscopy, and scattering techniques that Co8Zn8Mn4 forms an above room temperature triangular skyrmion lattice.
View Article and Find Full Text PDFWe predict and experimentally verify an entoptic phenomenon through which humans are able to perceive and discriminate optical spin-orbit states. Direct perception and discrimination of these particular states of light with polarization-coupled spatial modes is possible through the observation of distinct profiles induced by the interaction between polarization topologies and the radially symmetric dichroic elements that are centered on the foveola in the macula of the human eye. A psychophysical study was conducted where optical states with a superposition of right and left circular polarization coupled to two different orbital angular momentum (OAM) values ([Formula: see text] and [Formula: see text]) were directed onto the retina of participants.
View Article and Find Full Text PDFSpin-orbit coupling of light has come to the fore in nanooptics and plasmonics, and is a key ingredient of topological photonics and chiral quantum optics. We demonstrate a basic tool for incorporating analogous effects into neutron optics: the generation and detection of neutron beams with coupled spin and orbital angular momentum. The He neutron spin filters are used in conjunction with specifically oriented triangular coils to prepare neutron beams with lattices of spin-orbit correlations, as demonstrated by their spin-dependent intensity profiles.
View Article and Find Full Text PDFWe use a Mach-Zehnder interferometer to perform neutron holography of a spiral phase plate. The object beam passes through a spiral phase plate, acquiring the phase twist characteristic of orbital angular momentum states. The reference beam passes through a fused silica prism, acquiring a linear phase gradient.
View Article and Find Full Text PDFSample preparation is a significant challenge for detection and sensing technologies, since the presence of blood cells can interfere with the accuracy and reliability of virus detection at the nanoscale for point-of-care testing. To the best of our knowledge, there is not an existing on-chip virus isolation technology that does not use complex fluidic pumps. Here, we presented a lab-on-a-chip filter device to isolate plasma and viruses from unprocessed whole blood based on size exclusion without using a micropump.
View Article and Find Full Text PDF