One of the distinctive pathological features of Alzheimer's disease (AD) is the deposition of amyloid plaques within the brain of affected individuals. These plaques have traditionally been investigated using labeling techniques such as immunohistochemical imaging. However, the use of labeling can disrupt the structural integrity of the molecules being analyzed.
View Article and Find Full Text PDFNoninvasive and label-free analysis of cell membranes at the nanoscale is essential to comprehend vital cellular processes. However, conventional analytical tools generally fail to meet this challenge due to the lack of required sensitivity and/or spatial resolution. Herein, we demonstrate that tip-enhanced Raman spectroscopy (TERS) is a powerful nanoanalytical tool to analyze dipalmitoylphosphatidylcholine (DPPC) bilayers and human cell membranes with submolecular resolution in the vertical direction.
View Article and Find Full Text PDFTwo-dimensional (2D) molecular materials have attracted immense attention due to their unique properties, promising a wide range of exciting applications. To understand the structure-property relationship of these low-dimensional materials, sensitive analytical tools capable of providing structural and chemical characterisation at the nanoscale are required. However, most conventional analytical techniques fail to meet this challenge, especially in a label-free and non-destructive manner under ambient conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2022
Lack of appropriate tools for visualizing cell membrane molecules at the nanoscale in a non-invasive and label-free fashion limits our understanding of many vital cellular processes. Here, we use tip-enhanced Raman spectroscopy (TERS) to visualize the molecular distribution in pancreatic cancer cell (BxPC-3) membranes in ambient conditions without labelling, with a spatial resolution down to ca. 2.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2022
Phase-separated polymer blend films are an important class of functional materials with numerous technological applications in solar cells, catalysis, and biotechnology. These technologies are underpinned by the precise control of phase separation at the nanometer length-scales, which is highly challenging to visualize using conventional analytical tools. Herein, we introduce tip-enhanced Raman spectroscopy (TERS), in combination with atomic force microscopy (AFM), confocal Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), as a sensitive nanoanalytical method to determine lateral and vertical phase-separation in polystyrene (PS)-poly(methyl methacrylate) (PMMA) polymer blend films.
View Article and Find Full Text PDFDisruption of the neuronal membrane by toxic amyloid β oligomers is hypothesized to be the major event associated with Alzheimer's disease's neurotoxicity. Misfolding of amyloid β is followed by aggregation via different pathways in which structurally different amyloid β oligomers can be formed. The respective toxic actions of these structurally diverse oligomers can vary significantly.
View Article and Find Full Text PDFProtein misfolding diseases, like Alzheimer's, Parkinson's, and Huntington's disease, are associated with misfolded protein aggregation. Alzheimer's disease is related to a progressive neuronal death induced by small amyloid β oligomers. Here, we describe the procedure to prepare and identify different types of small toxic amyloid β oligomers by atomic force microscopy (AFM).
View Article and Find Full Text PDFThe catalytic performance of metal nanoparticles (NPs), including activity, selectivity, and durability, depends on their shape and structure at the molecular level. Consequently, metal NPs of different size and shape, , nanobelts, nanocubes, nanoflakes, and nanowires, demonstrate different reactivity and provide different reaction rates depending on the facet exposed. In this context, the present review aims to summarize the shape-structure-activity relation of metallic nanocatalysts.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by progressive neurodegeneration associated with amyloid β (Aβ) peptide aggregation. The aggregation of Aβ monomers (AβMs) leads to the formation of Aβ oligomers (AβOs), the neurotoxic Aβ form, capable of permeating the cell membrane. Here, we investigated the effect of a fluorene-based active drug candidate, named K162, on both Aβ aggregation and AβO toxicity toward the bilayer lipid membrane (BLM).
View Article and Find Full Text PDFNeurodegeneration in Alzheimer's disease is associated with disruption of the neuronal cell membrane by the amyloid β (Aβ) peptide. However, the disruption mechanism and the resulting changes in membrane properties remain to be elucidated. To address this issue, herein the interaction of amyloid β monomers (AβMs) and amyloid β oligomers (AβOs) with a floating bilayer lipid membrane (fBLM) was studied using electrochemical and IR spectroscopy techniques.
View Article and Find Full Text PDFAmyloid β, Aβ(1-42), is a component of senile plaques present in the brain of Alzheimer's disease patients and one of the main suspects responsible for pathological consequences of the disease. Herein, we directly visualize the Aβ activity toward a brain-like model membrane and demonstrate that this activity strongly depends on the Aβ oligomer size. PeakForce quantitative nanomechanical mapping mode of atomic force microscopy imaging revealed that the interaction of large-size (LS) Aβ oligomers, corresponding to high-molecular-weight Aβ oligomers, with the brain total lipid extract (BTLE) membrane resulted in accelerated Aβ fibrillogenesis on the membrane surface.
View Article and Find Full Text PDF