Objective: In this study we analyze viscoelastic properties of three flowable (Wave, Wave MV, Wave HV) and one universal hybrid resin (Ice) composites, prior to setting. We developed a mathematical model containing fractional derivatives in order to describe their properties.
Methods: Isothermal experimental study was conducted on a rheometer with parallel plates.
Objective: The aim of this study is to develop fractional derivative models for the assessment of viscoelastic properties related to handling characteristics of dental resin composites belonging to two classes: flowable (Revolution Formula 2 and Filtek Ultimate) and posterior "bulk-fill" flowable base (Smart Dentin Replace).
Methods: Rheological measurements on all materials tested in this study were performed using dynamic oscillatory rheometer at temperature of 23°C. A parallel plates module with a diameter of 20mm was used to measure the properties of the resin composites tested.