This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role.
View Article and Find Full Text PDFThis work combines experimental and computational study of Balb/3T3 clone A31 mouse embryo fibroblasts cell line adhesion and proliferation on fourteen different polymeric surfaces prepared from poly(dioxanone) (PDO), poly(glycolic acid) (PGA), poly(hydroxybutyrate) (PHB), and poly(L-lactic acid) (PLA), and their 1:1 mixtures. The study was done with the aim to explore the attractive interactions between various synthetic biomaterials and simple model of the cell attachment mechanism involving the trans-membrane protein integrin. The considered polymeric biodegradable biomaterials can be used as scaffolds for tissue engineering and regenerative urology.
View Article and Find Full Text PDFUrethral defects originating from congenital malformations, trauma, inflammation or carcinoma still pose a great challenge to modern urology. Recent therapies have failed many times and have not provided the expected results. This negatively affects patients' quality of life.
View Article and Find Full Text PDFAdditive manufacturing has a great potential for creating hard tissue substitutes, such as bone and cartilage, or soft tissues, such as vascular and skin grafts. This study is a pilot study for 3D printing of a new material mixture potentially used as a tubular substitute for urethra replacement. This new mixture is a blend of polylactic acid (PLA) and polyhydroxybutyrate (PHB).
View Article and Find Full Text PDFIn this study we evaluated the biocompatibility of a modified polyurethane nanofiber membrane on a polypropylene spunbond substrate. This material was treated with plasma using diffuse coplanar surface barrier discharge, and subsequent modification was done by continuous spraying of a biologically active chitosan solution (CHIT) containing an inclusion complex of β-cyclodextrin (β-CD) encapsulating berberine (BRB). Biocompatibility was evaluated using several in vitro assays.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
October 2016
The aim of this work was to evaluate the effects of incorporating thrombin in arabinogalactan (AG)/β-glucan (BG)-based carriers. The products were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy techniques. Results, especially deconvoluted XRPD patterns indicated creation of new phases and potential complex formation.
View Article and Find Full Text PDFThe preparation and study of three-dimensional functional skin substitutes has been the focus of intense research for several decades. Dermal substitutes are now commonly used in medical practice for a variety of applications. Here, we assess the toxicity of seven selected acellular dermal matrix materials to establish their potential for use in future three-dimensional skin substitute studies.
View Article and Find Full Text PDFBiomed Pap Med Fac Univ Palacky Olomouc Czech Repub
March 2015
Aim: The purpose of this study was to prepare a coladerm-beta glucan membrane (CBGM) and to evaluate its biocompatibility, cytotoxicity, antimicrobial activity, genotoxicity and mutagenicity.
Methods: The biocompatibility of the membrane was studied on the base of cell adhesion and colonization of human fibroblasts on the biomaterial surface by light microscopy. The MTT test and LDH level determination in the culture medium removed from the control and cells treated on the membrane, were used for viability and cytotoxic evaluations.
Chitosan/tripolyphosphate (CHIT/TPP) and chitosan/tripolyphosphate/chondroitin sulfate (CHIT/TPP/CHS) core-shell type microspheres were prepared by polyelectrolyte complexation in order to develop a biocompatible matrix for drug delivery. The continual method using a multi-loop reactor under sterile conditions was applied for microsphere preparation. All the types of microspheres produced were spherical in shape and had a porous structure.
View Article and Find Full Text PDFNeuro Endocrinol Lett
December 2006
Objectives: This study was performed to test a new technique for treatment of chronic non-healing wound (diabetic ulcer) using autologous biograft composed of autologous skin fibroblasts on biodegradable collagen membrane (Coladerm) in combination with autologous mesenchymal stem cells (MSC) derived from the patient's bone marrow.
Design: The bone marrow aspirate of the patient with diabetic foot was applied directly to the wound and injected into the edges of the wound, finally covered with prepared autologous biograft. The patient received two additional treatments with cultured MSC on day 7 and 17.
The total contents of anthocyanins, flavonoids, and phenolics in 60 samples of black chokeberries (Aronia melanocarpa), after treating with catabolites of polyamine biosynthesis (KPAb) and ornithine decarboxylase inhibitor, were analyzed spectrophotometrically, and quercetin and free polyamine contents were analyzed by RP-HPLC with UV detection. The average total contents of the individual substances and phenolic subgroups in control berries were as follows (mg x kg(-1)): anthocyanines, 6408; flavonoids, 664; phenolics, 37,600; quercetin, 349. KPAb decreased total contents of anthocyanines and phenolics only slightly but significantly increased the content of flavonoids.
View Article and Find Full Text PDF