Dental erosion is a multifactorial condition that can result in the loss of tooth structure and function, potentially increasing tooth sensitivity. The exposure of enamel to acids from non-bacterial sources is responsible for the progression of erosion. These erosive challenges are counteracted by the anti-erosive properties of the acquired pellicle (AP), an integument formed in vivo as a result of selective adsorption of salivary proteins on the tooth surface, containing also lipids and glycoproteins.
View Article and Find Full Text PDFWe will provide a translational view of using the recent technological advances in dental research for predicting, monitoring, and preventing the development of oral diseases by investigating the diagnostic and therapeutic role of salivary proteins. New analytical state-of-the-art technologies such as mass spectrometry and atomic force microscopy have revolutionized the field of oral biology. These novel technologies open avenues for a comprehensive characterization of the salivary proteins followed by the evaluation of the physiological functions which could make possible in a near future the development of a new series of synthetic protein for therapeutic propose able to prevent global oral diseases such as periodontal disease and dental caries, the two most prevalent oral diseases in the World.
View Article and Find Full Text PDF