Publications by authors named "Durrieu M"

Dendrigrafts are multivalent macromolecules with less ordered topology and higher branching than dendrimers. Exhibiting a high density of terminal amines, poly-L-lysine dendrigrafts of the fifth generation (DGL G5) allow hydrogel formation with tailorable crosslinking density and surface modification. This work presents DGL G5 as multifunctional crosslinkers in biomimetic PEG hydrogels to favour the osteogenic differentiation of human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF

Methods for promoting and controlling the differentiation of human mesenchymal stem cells (hMSCs) in vitro before in vivo transplantation are crucial for the advancement of tissue engineering and regenerative medicine. In this study, we developed poly(ethylene glycol) diacrylate (PEGDA) hydrogels with tunable mechanical properties, including elasticity and viscoelasticity, coupled with bioactivity achieved through the immobilization of a mixture of RGD and a mimetic peptide of the BMP-2 protein. Despite the key relevance of hydrogel mechanical properties for cell culture, a standard for its characterization has not been proposed, and comparisons between studies are challenging due to the different techniques employed.

View Article and Find Full Text PDF

Biomaterial surface engineering and the integration of cell-adhesive ligands are crucial in biological research and biotechnological applications. The interplay between cells and their microenvironment, influenced by chemical and physical cues, impacts cellular behavior. Surface modification of biomaterials profoundly affects cellular responses, especially at the cell-surface interface.

View Article and Find Full Text PDF

The development of 2D or 3D bioactive platforms for rapidly isolating pure populations of cells from adult stem cells holds promise for advancing the understanding of cellular mechanisms, drug testing, and tissue engineering. Over the years, methods have emerged to synthesize bioactive micro- and nanostructured 2D materials capable of directing stem cell fate. We introduce a novel method for randomly micro- or nanopatterning any protein/peptide onto both 2D and 3D scaffolds via spray technology.

View Article and Find Full Text PDF

Quantitative risk assessment was used to estimate the risk of introducing foot-and-mouth disease (FMD) through bone-in beef from Argentina (FMD-free with vaccination status) into other FMD-free countries. A stochastic model was built to characterize all the steps from primary production to bone-in beef export and introduction into an FMD-free country. The probability that bone-in beef from at least one animal infected with the FMD virus (FMDV) was exported during a year was 5.

View Article and Find Full Text PDF

Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Biomimetic scaffolds imitate the native extracellular matrix (ECM) and are often utilized as analogues of the natural ECM to facilitate investigations of cell-ECM interactions and processes. , the cellular microenvironment has a crucial impact on regulating cell behavior and functions.

View Article and Find Full Text PDF

Background: Oxidative stress (OS) is mainly associated with the pathogenesis of intervertebral disc (IVD) degeneration; it causes nucleus pulposus cells (NPCs) to undergo senescence and triggers autophagy and apoptosis. This study aims to evaluate the regeneration potential of extracellular vesicles (EVs) derived from human umbilical cord-mesenchymal stem cells (hUC-MSCs) in an rat NPC-induced OS model.

Design: NPCs were isolated from rat coccygeal discs, propagated, and characterized.

View Article and Find Full Text PDF

The aim of this study is to investigate the impact of the stiffness and stress relaxation of poly(acrylamide--acrylic acid) hydrogels on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Varying the amount of the crosslinker and the ratio between the monomers enabled the obtainment of hydrogels with controlled mechanical properties, as characterized using unconfined compression and atomic force microscopy (AFM). Subsequently, the surface of the hydrogels was functionalized with a mimetic peptide of the BMP-2 protein, in order to favor the osteogenic differentiation of hMSCs.

View Article and Find Full Text PDF

The aim of this study is to investigate polyacrylamide-based hydrogels stress relaxation and the subsequent impact on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Different hydrogels are synthesized by varying the amount of cross-linker and the ratio between the monomers (acrylamide and acrylic acid), and characterized by compression tests. It has been found that hydrogels containing 18% of acrylic acid exhibit an average relaxation of 70%, while pure polyacrylamide gels show an average relaxation of 15%.

View Article and Find Full Text PDF

How social interactions influence cognition is a fundamental question, yet rarely addressed at the neurobiological level. It is well established that the presence of conspecifics affects learning and memory performance, but the neural basis of this process has only recently begun to be investigated. In the fruit fly Drosophila melanogaster, the presence of other flies improves retrieval of a long-lasting olfactory memory.

View Article and Find Full Text PDF

Associative learning allows animals to establish links between stimuli based on their concomitance. In the case of Pavlovian conditioning, a single stimulus A (the conditional stimulus, CS) is reinforced unambiguously with an unconditional stimulus (US) eliciting an innate response. This conditioning constitutes an 'elemental' association to elicit a learnt response from A without US presentation after learning.

View Article and Find Full Text PDF

The development of a functional model for microcirculation is an unresolved challenge, with major impact for the creation and regeneration of organs in the tissue engineering. The absence of prevascularized engineered tissues limits enormously their efficacy and integration. Therefore, in this study, the formation of tubular-like structures with human umbilical vein endothelial cells (HUVECs) is investigated thanks to three-dimensional polycarbonate (PC) microchannel (μCh) scaffolds, surface biofunctionalized with hyaluronic acid/chitosan (HA/CHI) layer-by-layer (LbL) films grafted with adhesive (RGD) and angiogenic (SVV and QK) peptides, alone and in combination.

View Article and Find Full Text PDF

Synthetic grafts do not provide an appealing surface for endothelial cells to adhere and colonize the inner surface. To promote in situ endothelialization the following aspect has to be taken into account, endothelial progenitor cells (EPCs) needs to be mobilized on the surface of the graft. The surface of the graft has to be sufficiently biocompatible to create a prone environment for the EPCs to adhere, proliferate and, differentiate to form a layer and subsequently improve graft patency.

View Article and Find Full Text PDF

Microvesicles (MVs) are used by various types of cells in the human body for intercellular communication, making them biomarkers of great potential for the early and non-evasive diagnosis of a spectrum of diseases. An integrated analysis including morphological, quantitative, and compositional studies is most desirable for the clinical application of MV detection; however, such integration is limited by the currently available analysis techniques. In this context, exploiting the phosphatidylserine (PS) exposure of MVs, we synthesized a series of dendritic molecules with PS-binding sites at the periphery.

View Article and Find Full Text PDF

The native microenvironment of mesenchymal stem cells (hMSCs)-the extracellular matrix (ECM), is a complex and heterogenous environment structured at different scales. The present study aims at mimicking the hierarchical microorganization of proteins or growth factors within the ECM using the photolithography technique. Polyethylene terephthalate substrates were used as a model material to geometrically defined regions of RGD + BMP-2 or RDG + OGP mimetic peptides.

View Article and Find Full Text PDF

Advances in microscopy with new visualization possibilities often bring dramatic progress to our understanding of the intriguing cellular machinery. Picosecond optoacoustic micro-spectroscopy is an optical technique based on ultrafast pump-probe generation and detection of hypersound on time durations of picoseconds and length scales of nanometers. It is experiencing a renaissance as a versatile imaging tool for cell biology research after a plethora of applications in solid-state physics.

View Article and Find Full Text PDF

Cell morphological analysis has long been used in cell biology and physiology for abnormality identification, early cancer detection, and dynamic change analysis under specific environmental stresses. This work reports on the remote mapping of cell 3D morphology with an in-plane resolution limited by optics and an out-of-plane accuracy down to a tenth of the optical wavelength. For this, GHz coherent acoustic phonons and their resonance harmonics were tracked by means of an ultrafast opto-acoustic technique.

View Article and Find Full Text PDF

Nanotopography with length scales of the order of extracellular matrix elements offers the possibility of regulating cell behavior. Investigation of the impact of nanotopography on cell response has been limited by the inability to precisely control geometries, especially at high spatial resolutions and across practically large areas. In this paper, we demonstrate well-controlled and periodic nanopillar arrays of silicon and investigate their impact on osteogenic differentiation of human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF

The commitment and differentiation of human mesenchymal stem cells (hMSCs) are guided by bioactive molecules within the extracellular matrix. Among the various approaches to design biomaterials, the functionalization of biomaterial surfaces with peptides from the sequence of proteins from the extracellular matrix is quite common. The purpose of this functionalization is to recruit hMSCs and promote their differentiation into the appropriate lineage.

View Article and Find Full Text PDF

In the last ten years, endothelial progenitor cells (EPCs) have gained interest as an attractive cell population in regenerative medicine for vascular applications. This population is defined as the precursor of endothelial mature cells (ECs) through a process of differentiation. To our knowledge, no single marker can be used to discriminate them from mature ECs.

View Article and Find Full Text PDF

Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate.

View Article and Find Full Text PDF

Engineering artificial extracellular matrices, based on the biomimicry of the spatial distribution of proteins and growth factors within their native microenvironment, is of great importance for understanding mechanisms of bone tissue regeneration. Herein, photolithography is used to decorate glass surfaces with subcellular patterns of RGD and BMP-2 ligands; two mimetic peptides recognized to be involved in stem cells osteogenesis. The biological relevance of well-defined RGD and BMP-2 patterned surfaces is evaluated by investigating the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts, in the absence of induction media.

View Article and Find Full Text PDF

Within the native microenvironment, extracellular matrix (ECM) components are thought to display a complex and heterogeneous distribution, spanning several length scales. Herein, the objective is to mimic, in vitro, the hierarchical organization of proteins and growth factors as well as their crosstalk. Photolithography technique was used to adjacently pattern geometrically defined regions of RGD and BMP-2 mimetic peptides onto glass substrates.

View Article and Find Full Text PDF

The organisation and structure of the official Veterinary Services (OVS) are designed to meet a specific aim--the health certification of animal health, welfare and food safety in the production and processing stage. Disease prevention and control calls for programmes and projects that, depending on the characteristics of each disease, may involve any branch of the OVS, from the laboratory to field activities. For the purpose of this work, the model used is that of a country that is 'free from foot and mouth disease with vaccination' in accordance with the conditions stipulated in Chapter 8.

View Article and Find Full Text PDF

Unlabelled: Human bone marrow mesenchymal stem cells (hBMSCs) commitment and differentiation are dictated by bioactive molecules sequestered within their Extra Cellular Matrix (ECM). One common approach to mimic the physiological environment is to functionalize biomaterial surfaces with ECM-derived peptides able to recruit stem cells and trigger their linage-specific differentiation. The objective of this work was to investigate the effect of RGD and BMP-2 ligands crosstalk and density on the extent of hBMSCs osteogenic commitment, without recourse to differentiation medium.

View Article and Find Full Text PDF