Background: Fermentation completion is a major prerequisite in many industrial processes involving the bakery yeast Saccharomyces cerevisiae. Stuck fermentations can be due to the combination of many environmental stresses. Among them, high temperature and ethanol content are particularly deleterious especially in bioethanol and red wine production.
View Article and Find Full Text PDFIn the last two decades, the extensive genome sequencing of strains belonging to the Saccharomyces genus has revealed the complex reticulated evolution of this group. Among the various evolutionary mechanisms described, the introgression of large chromosomal regions resulting from interspecific hybridization has recently shed light on Saccharomyces uvarum species. In this work we provide the de novo assembled genomes of four S.
View Article and Find Full Text PDFNucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular receptors that control innate immunity and other biotic interactions in animals and plants. NLRs have been characterized in plant and animal lineages, but in fungi, this gene family has not been systematically described. There is however previous indications of the involvement of NLR-like genes in nonself recognition and programmed cell death in fungi.
View Article and Find Full Text PDFWe report the sequencing of the basidiomycetous yeast Rhodosporidium toruloides CECT1137. The current assembly comprises 62 scaffolds, for a total size of ca. 20.
View Article and Find Full Text PDFIn addition to Saccharomyces cerevisiae, the cryotolerant yeast species S. uvarum is also used for wine and cider fermentation but nothing is known about its natural history. Here we use a population genomics approach to investigate its global phylogeography and domestication fingerprints using a collection of isolates obtained from fermented beverages and from natural environments on five continents.
View Article and Find Full Text PDFBackground: The industrially important yeast Blastobotrys (Arxula) adeninivorans is an asexual hemiascomycete phylogenetically very distant from Saccharomyces cerevisiae. Its unusual metabolic flexibility allows it to use a wide range of carbon and nitrogen sources, while being thermotolerant, xerotolerant and osmotolerant.
Results: The sequencing of strain LS3 revealed that the nuclear genome of A.
Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis.
View Article and Find Full Text PDFBackground: Candida glabrata follows C. albicans as the second or third most prevalent cause of candidemia worldwide. These two pathogenic yeasts are distantly related, C.
View Article and Find Full Text PDFIn this paper we propose an automatic protein family expansion approach for recruitment of new members among the protein-coding genes in newly sequenced genomes. The criteria for adding a new member to a family depends on the structure of each individual family versus being globally uniform. The detection of a threshold in the ROC space of all sorted iterative profile sets defines the alignments selection criteria for each family.
View Article and Find Full Text PDFPolyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages.
View Article and Find Full Text PDFThe Génolevures online database (URL: http://www.genolevures.org) stores and provides the data and results obtained by the Génolevures Consortium through several campaigns of genome annotation of the yeasts in the Saccharomycotina subphylum (hemiascomycetes).
View Article and Find Full Text PDFWe report here a PCR-based assay using a single primer pair targeting the RPL31 gene that allows discrimination between Candida glabrata, Candida bracarensis, and Candida nivariensis according to the size of the generated amplicon.
View Article and Find Full Text PDFBackground: This paper describes an efficient in silico method for detecting tandem gene arrays (TGAs) in fully sequenced and compact genomes such as those of prokaryotes or unicellular eukaryotes. The originality of this method lies in the search of protein sequence similarities in the vicinity of each coding sequence, which allows the prediction of tandem duplicated gene copies independently of their functionality.
Results: Applied to nine hemiascomycete yeast genomes, this method predicts that 2% of the genes are involved in TGAs and gene relics are present in 11% of TGAs.
Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication.
View Article and Find Full Text PDFThe Génolevures online database (http://cbi.labri.fr/Genolevures/ and http://genolevures.
View Article and Find Full Text PDFGene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species.
View Article and Find Full Text PDFNatural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. However, the link between phenotype variation and genetic determinism is still difficult to identify, especially in wild populations. Using genome hybridization on DNA microarrays, it is now possible to identify single-feature polymorphisms among divergent yeast strains.
View Article and Find Full Text PDFThe Saccharomyces bayanus var. uvarum yeasts are associated with spontaneous fermentation of must. Some strains were shown to be enological yeasts of interest in different winemaking processes.
View Article and Find Full Text PDFThe Génolevures online database (http://cbi.labri.fr/Genolevures/) provides tools and data relative to 4 complete and 10 partial genome sequences determined and manually annotated by the Génolevures Consortium, to facilitate comparative genomic studies of hemiascomycetous yeasts.
View Article and Find Full Text PDFWe present a compact, stable, unambiguous and extensible nomenclature for unique chromosomal elements from genomic DNA, developed to meet the increasing need created by the increasing number of yeast sequencing projects. Our proposal, adopted for use in the Génolevures project, is specifically designed to facilitate basic tasks in comparative genomics.
View Article and Find Full Text PDFCell Biochem Funct
September 2005
The BAR proteins are a well-conserved family of proteins including Rvsp in yeast, amphiphysins and Bin proteins in mammals. In yeast, as in mammals, BAR proteins are known to be implicated in vesicular traffic. The Gyp5p (Ypl249p) and Ymr192p proteins interact in two-hybrid tests with both Rvs161p and Rvs167p.
View Article and Find Full Text PDFIdentifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates.
View Article and Find Full Text PDFThe Génolevures online database (http://cbi.labri.fr/Genolevures/) provides data and tools to facilitate comparative genomic studies on hemiascomycetous yeasts.
View Article and Find Full Text PDFSaccharomyces mating-type switching results from replacement by gene conversion of the MAT locus with sequences copied from one of two unexpressed donor loci, HML or HMR. MATa cells recombine with HMLalpha approximately 90% of the time, whereas MATalpha cells choose HMRa 80%-90% of the time. HML preference in MATa is controlled by the cis-acting recombination enhancer (RE) that regulates recombination along the entire left arm of chromosome III.
View Article and Find Full Text PDF