Background: Previous studies have shown that patients with hypercholesterolemia experience elevated levels of oxidized LDL (oxLDL), a molecule which triggers inflammation and collagenase activity. In this study we discovered novel mechanistic effects of oxLDL on tendon cells and the mediators regulating matrix remodeling by analyzing the expression and activity of related proteins and enzymes. These effects may contribute to tendon damage in patients with high cholesterol.
View Article and Find Full Text PDFTendons are specialized tissues composed primarily of load-responsive fibroblasts (tenocytes) embedded in a collagen-rich extracellular matrix. Habitual mechanical loading or targeted exercise causes tendon cells to increase the stiffness of the extracellular matrix; this adaptation may occur in part through collagen synthesis or remodeling. Integrins are likely to play an important role in transmitting mechanical stimuli from the extracellular matrix to tendon cells, thereby triggering cell signaling pathways which lead to adaptive regulation of mRNA translation and protein synthesis.
View Article and Find Full Text PDFThe bioactive sphingolipid ceramide 1-phosphate (C1P) regulates cell division in a variety of cell types including macrophages. However, the mechanisms involved in this action are not completely understood. In the present work we show that C1P stimulates the release of vascular endothelial growth factor (VEGF) in RAW264.
View Article and Find Full Text PDFPurpose: Angiopoietin-like 4 (ANGPTL4) is known to play a variety of roles in the response to exercise, and more recently has been shown to enhance the healing of tendon, a fibrous load-bearing tissue required for efficient movement. The objective of the current study was to further explore the mechanisms of ANGPTL4's effect on tendon cells using a gene array approach.
Methods: Human tendon fibroblasts were treated with recANGPTL4 and their global transcriptome response analyzed after 4 and 24 h.
Biochem Biophys Res Commun
January 2017
p53 is a tumor suppressor protein which is either lost or inactivated in a large majority of tumors. The small molecule 2-phenylethynesulfonamide (PES) was originally identified as the inhibitor of p53 effects on the mitochondrial death pathway. In this report we demonstrate that p53 protein from PES-treated cells was detected in reduced mobility bands between molecular weights 95-220 kDa.
View Article and Find Full Text PDFIt has long been realized that hematopoietic cells may have the capacity to trans-differentiate into non-lymphohematopoietic cells under specific conditions. However, the mechanisms and the factors for hematopoietic cell trans-differentiation remain unknown. In an in vitro culture system, we found that using a conditioned medium from proliferating fibroblasts can induce a subset of hematopoietic cells to become adherent fibroblast-like cells (FLCs).
View Article and Find Full Text PDFThe survival of macrophages depends on the presence of specific cytokines that activate survival signaling events, as well as suppressing formation of apoptosis-inducing pathways. We have previously shown that macrophages deprived of macrophage colony stimulating factor (M-CSF) produce ceramide that contributes to apoptosis of these cells, a pathway that is suppressed by exposure to oxidized LDL. In this study we have examined macrophages derived from mice lacking acid sphingomyelinase (ASMase) to ask whether these events are altered due to the impaired ability of these cells to break down sphingomyelin and produce ceramide.
View Article and Find Full Text PDFBackground: Etoposide has been used clinically in cancer treatment, as well as in numerous research studies, for many years. However, there is incomplete information about its exact mechanism of action in induction of cell death.
Methods: Etoposide was compared at various concentrations to characterize the mechanisms by which it induces cell death.
We tested whether loss of eukaryotic elongation factor 2 kinase (eEF2K) activity in macrophages suppresses development of atherosclerosis by transplanting bone marrow from mice with mutant eEF2K into ldlr(-/-) mice. Sixteen weeks after high-fat diet feeding, mutant eEF2K hematopoietic chimeras had a dramatically reduced level of atherosclerotic plaque formation. M1-skewed macrophages from eEF2K knock-in mice have less tumour necrosis factor-α release and a lesser ability to induce expression of endothelial cell markers, providing a potential explanation for the role of eEF2K.
View Article and Find Full Text PDFAngiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain).
View Article and Find Full Text PDFPhosphorylation of the BH3 (Bcl-2 homology domain 3)-only protein BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) can either directly disrupt its association with the pro-survival proteins Bcl-X(L) and/or Bcl-2, or cause association of BAD with 14-3-3 proteins. In the present study, we further characterize phosphorylation of BAD at Ser170, a unique site with unclear function. We provide further evidence that mutation of Ser170 to a phospho-mimetic aspartic acid residue (S170D) can have a profound inhibitory effect on the pro-apoptosis function of BAD.
View Article and Find Full Text PDFMacrophages are prominent components of human atherosclerotic lesions and they are believed to accelerate the progression and/or complications of both early and advanced atherosclerotic lesions. We and others have shown that oxidized low-density lipoprotein (oxLDL) induces growth and inhibits apoptosis in murine bone marrow-derived macrophages. In this study, we sought to characterize the oxidative modification of LDL that is responsible for this prosurvival effect.
View Article and Find Full Text PDFMacrophages play a key role in the pathogenesis of atherosclerosis, in part by destabilizing plaques. We and others have shown that low concentrations of oxidized LDL (oxLDL) inhibit macrophage apoptosis. As oxLDL is present in lesions, this may be a mechanism by which macrophage populations in the intima are expanded.
View Article and Find Full Text PDFGrowth factor withdrawal from hemopoietic cells results in activation of the mitochondrial pathway of apoptosis. Members of the Bcl-2 family regulate this pathway, with anti-apoptotic members counteracting the effects of pro-apoptotic members. We investigated the effect on Mcl-1 function of mutation at a conserved threonine 163 residue (T163) in its proline, glutamate, serine, and threonine rich (PEST) region.
View Article and Find Full Text PDFMCL-1, a pro-survival member of the BCL-2 family, was previously shown to have functions in ATR-dependent Chk1 phosphorylation following DNA damage. To further delineate these functions, we explored possible differences in DNA damage response caused by lack of MCL-1 in mouse embryo fibroblasts (MEFs). As expected, Mcl-1(-/-) MEFs had delayed Chk1 phosphorylation following etoposide treatment, compared to wild type MEFs.
View Article and Find Full Text PDFWe recently reported that oxidized LDL (oxLDL) induces an oscillatory increase in intracellular calcium ([Ca(2+)](i)) levels in macrophages. Furthermore, we have shown that these [Ca(2+)](i) oscillations mediate oxLDL's ability to inhibit macrophage apoptosis in response to growth factor deprivation. However, the signal transduction pathways by which oxLDL induces [Ca(2+)](i) oscillations have not been elucidated.
View Article and Find Full Text PDFIntroduction: The inflammation associated with calcium pyrophosphate dihydrate (CPPD) crystal-induced arthritis arises from the activation of neutrophils with crystals in the synovial joint. Furthermore, constitutive neutrophil apoptosis is inhibited by this interaction with CPPD so that the lifetime of the cells and the duration of the inflammatory response are extended. The objective of this study was to investigate the role of bcl-2 protein family members in the CPPD-induced prosurvival response.
View Article and Find Full Text PDFPIK3CA, which codes for the p110alpha catalytic subunit of phosphatidylinositol-3-kinase (PI3K), is implicated as an oncogene. Despite importance of PIK3CA in cancer, little is known about what drives up its expression in tumor cells. We recently characterized the PIK3CA promoter and reported that it is transcriptionally silenced by the tumor suppressor protein p53.
View Article and Find Full Text PDFOxidized LDL (oxLDL) promotes lipid accumulation as well as growth and survival signaling in macrophages. OxLDL uptake is mainly due to scavenger receptors SR-AI/II and CD36. However, other scavenger receptors such as lectin-like oxLDL receptor-1 (LOX-1) may also play a role.
View Article and Find Full Text PDFHelicobacter pylori is one of the most common pathogens affecting humans and is the major environmental factor in the development of gastric cancer increasing from 4 to 6 folds the risk of its development. Variations in cancer risk among H. pylori infected individuals may correlate to difference in H.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2009
Objective: Macrophage survival and proliferation is believed to be a contributing factor in the development of early atherosclerotic lesions. Oxidized low density lipoprotein (oxLDL), a key mediator in the pathogenesis of this disease, has been shown to block apoptosis in macrophages deprived of growth factor. In this report, we investigate the mechanism of oxLDL-mediated macrophage survival.
View Article and Find Full Text PDFThe activation of PI3K (phosphoinositide 3-kinase) family members is a universal event in response to virtually all cytokines, growth factors and hormones. As a result of formation of PtdIns with an added phosphate at the 3 position of the inositol ring, activation of the protein kinases PDK1 (phosphoinositide-dependent kinase 1) and PKB (protein kinase B)/Akt occurs. The PI3K/PKB pathway impinges upon a remarkable array of intracellular events that influence either directly or indirectly whether or not a cell will undergo apoptosis.
View Article and Find Full Text PDFHere we report a novel role for myeloid cell leukemia 1 (Mcl-1), a Bcl-2 family member, in regulating phosphorylation and activation of DNA damage checkpoint kinase, Chk1. Increased expression of nuclear Mcl-1 and/or a previously reported short nuclear form of Mcl-1, snMcl-1, was observed in response to treatment with low concentrations of etoposide or low doses of UV irradiation. We showed that after etoposide treatment, Mcl-1 could coimmunoprecipitate with the regulatory kinase, Chk1.
View Article and Find Full Text PDF