Publications by authors named "Durgadevi Elamaran"

Electronic waste (e-waste) has become a significant environmental and societal challenge, necessitating the development of sustainable alternatives. Biocompatible and biodegradable electronic devices offer a promising solution to mitigate e-waste and provide viable alternatives for various applications, including triboelectric nanogenerators (TENGs). This review provides a comprehensive overview of recent advancements in biocompatible, biodegradable, and implantable TENGs, emphasizing their potential as energy scavengers for healthcare devices.

View Article and Find Full Text PDF

This study demonstrates the conversion of metallic titanium (Ti) to titanium oxide just by conducting electrical current through Ti thin film in vacuum and increasing the temperature by Joule heating. This led to the improvement of electrical and thermal properties of a microbolometer. A microbolometer with an integrated Ti thermistor and heater width of 2.

View Article and Find Full Text PDF

Doping plays a significant role in affecting the physical and chemical properties of two-dimensional (2D) dichalcogenide materials. Controllable doping is one of the major factors in the modification of the electronic and mechanical properties of 2D materials. MoS 2D materials have gained significant attention in gas sensing owing to their high surface-to-volume ratio.

View Article and Find Full Text PDF

Assuming that the 0.6-μm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology, different Si-based temperature sensors such as metal-oxide-semiconductor field-effect transistor (MOSFET) (n-channel and p-channel), pn-junction diode (with p-body doping and without doping), and resistors (n or p single crystalline Si and n polycrystalline Si) were designed and characterized for its possible use in 1-THz antenna-coupled bolometers. The use of a half-wave dipole antenna connected to the heater end was assumed, which limited the integrated temperature sensor/heater area to be 15 × 15 µm.

View Article and Find Full Text PDF