Animal waste can contribute substantially to nutrient cycling and ecosystem productivity in many environments. However, little is known of the biogeochemical impact of animal excretion in wetland habitats. Here we investigate the effects of wood frog (Lithobates sylvaticus) tadpole aggregations on nutrient recycling, microbial metabolism and carbon cycling in geographically isolated wetlands.
View Article and Find Full Text PDFThere has been significant investment in stormwater control measures (SCM) to reduce erosion, filter pollutants, and mitigate peak storm flows within urban watersheds. SCMs have variable hydrologic connectivity to downstream waterbodies where SCMs may rapidly export water during storm events but dry up in-between events and these alternating wet/dry cycles influence the biogeochemical processes that occur in SCM soils. While the performance of SCMs has been evaluated for nutrient removal, less is known about the potential for mobilization of nutrients and dissolved organic matter (DOM) that accumulate in SCM soils.
View Article and Find Full Text PDFPreferential flow reduces water residence times and allows rapid transport of pollutants such as organic contaminants. Thus, preferential flow is considered to reduce the influence of soil matrix-solute interactions during solute transport. While this claim may be true when rainfall directly follows solute application, forcing rapid chemical and physical disequilibrium, it has been perpetuated as a general feature of solute transport-regardless of the magnitude preferential flow.
View Article and Find Full Text PDFUrbanization increases runoff, sediment, and nutrient loadings downstream, causing flooding, eutrophication, and harmful algal blooms. Stormwater control measures (SCMs) are used to address these concerns and are designed based on inflow loads. Thus, estimating nutrient and sediment loads is important for meeting restoration objectives.
View Article and Find Full Text PDFUrban developments can result in higher runoff and nutrient loadings transported to downstream receiving waterbodies. While much effort has been made recently in watershed restoration in the U.S.
View Article and Find Full Text PDFFloodplain inundation poses both risks and benefits to society. In this study, we characterize floodplain inundation across the United States using 5800 stream gages. We find that between 4% and 12.
View Article and Find Full Text PDFHarmful Algal Blooms (HABs) have been observed in all 50 states in the U.S., ranging from large freshwater lakes, such as the Great Lakes, to smaller inland lakes, rivers, and reservoirs, as well as marine coastal areas and estuaries.
View Article and Find Full Text PDFJ Am Water Resour Assoc
April 2019
Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off-channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality - too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed.
View Article and Find Full Text PDFScientists and policymakers increasingly recognize that headwater regions contain numerous temporary streams that expand and contract in length, but accurately mapping and modeling dynamic stream networks remain a challenge. Flow intermittency sensors offer a relatively new approach to characterize wet stream length dynamics at high spatial and temporal resolutions. We installed 51 flow intermittency sensors at an average spacing of 40 m along the stream network of a high-relief, headwater catchment (33 ha) in the Valley and Ridge of southwest Virginia.
View Article and Find Full Text PDFCommercial nurseries grow specialty crops for resale using a variety of methods, including containerized production, utilizing soilless substrates, on a semipervious production surface. These "container" nurseries require daily water application and continuous availability of mineral nutrients. These factors can generate significant nutrients [total nitrogen (TN), and total phosphorus (TP)] and sediment [total suspended solids (TSS)] in runoff, potentially contributing to eutrophication of downstream water bodies.
View Article and Find Full Text PDFLakes, reservoirs, and other ponded waters are ubiquitous features of the aquatic landscape, yet their cumulative role in nitrogen removal in large river basins is often unclear. Here we use predictive modeling, together with comprehensive river water quality, land use, and hydrography datasets, to examine and explain the influences of more than 18,000 ponded waters on nitrogen removal through river networks of the Northeastern United States. Thresholds in pond density where ponded waters become important features to regional nitrogen removal are identified and shown to vary according to a ponded waters' relative size, network position, and degree of connectivity to the river network, which suggests worldwide importance of these new metrics.
View Article and Find Full Text PDFChaoborus spp. (midge larvae) live in the anoxic sediments and hypolimnia of freshwater lakes and reservoirs during the day and migrate to the surface waters at night to feed on plankton. It has recently been proposed that Chaoborus take up methane (CH) from the sediments in their tracheal gas sacs, use this acquired buoyancy to ascend into the surface waters, and then release the CH, thereby serving as a CH "pump" to the atmosphere.
View Article and Find Full Text PDFIn this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r=0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r=0.
View Article and Find Full Text PDFStream and river restoration activities have recently begun to emphasize the enhancement of biogeochemical processing within river networks through the restoration of river-floodplain connectivity. It is generally accepted that this practice removes pollutants such as nitrogen and phosphorus because the increased contact time of nutrient-rich floodwaters with reactive floodplain sediments. Our study examines this assumption in the floodplain of a recently restored, low-order stream through five seasonal experiments.
View Article and Find Full Text PDFRiverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. The lability of DOM is thought to vary with age, with younger, relatively unaltered organic matter being more easily metabolized by aquatic heterotrophs than older, heavily modified material.
View Article and Find Full Text PDFEnviron Sci Technol
February 2002
The biogeochemical processes controlling the speciation and transport of manganese in a Colorado mountain stream were studied using a conservative tracer approach combined with laboratory experiments. The study stream, Lake Fork Creek, receives manganese-rich inflows from a wetland contaminated by acid mine drainage. A conservative tracer experiment was conducted on a 1300-m reach of the stream.
View Article and Find Full Text PDF