Publications by authors named "Durdane S Kuruca"

Mesenchymal stem cells (MSCs) are promising for clinical studies owing to their self-renewal, multipotency, trophic, and immunomodulatory properties. This study aimed to investigate the cytokine levels of human umbilical cord blood (CB) and Wharton's Jelly-(WJ) derived MSCs relevant to immune modulation on different passage levels in vitro. Umbilical CB MSCs were isolated using the ficoll-paque gradient method, and WJ-MSCs were isolated by the explant method.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) have the ability to self-renew and are multi-potent. They are a primary candidate for cell-based therapy due to their potential anti-cancer effects. The aim of this study was to evaluate the in vitro anti-leukemic effect of Wharton's Jelly-derived MSC (WJ-MSC) on the leukemic cell lines K562 and HL-60.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a leading cause of morbidity and death worldwide. As current cancer drugs are ineffective, new solutions are being sought in other fields, including nanoscience. Similarly, silver nanoparticles play an important role in the pharmaceutical industry as they act as anti-cancer agents with less harmful effects and are usually 1 to 100 nm in size.

View Article and Find Full Text PDF

These protocols describe modified methods that use Ficoll-Paque density gradient for umbilical cord blood-derived mesenchymal stem cells and explant method for Wharton's jelly-derived mesenchymal stem cells. The Ficoll-Paque density gradient method allows to obtain mesenchymal stem cells while eliminating monocytic cells. In this method, precoating the cell culture flasks with fetal bovine serum helps remove the monocytic cells and instruct more pure mesenchymal stem cells.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs), are a novel therapeutic option as the most common cell source, play an important role in the immunomodulation. In this study, it was aimed to determine the effect of MSCs on cytokines secreted by the immune system cells.

Methods: Intracellular cytokine levels (Interleukin-4 (IL-4), Interferon-γ (IFN-γ), and Interleukin-17 (IL-17)) detected by flow cytometry before and after co-culture between peripheral blood mononuclear cells (PBMCs) and MCSs.

View Article and Find Full Text PDF

Colorectal cancer is the most common tumor of the gastrointestinal system. The conventional treatment options for colorectal cancer are troublesome for both patients and clinicians. Recently, mesenchymal stem cells (MSCs) have been the novel focus for cell therapy due to their migration to tumor sites.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is the third most common cancer worldwide. Recently, mesenchymal stem cells (MSCs) have been considered a suitable cell therapy option for cancer due to their high migration rate to the tumor site.

Objectives: The study aimed to compare the effects of human umbilical cord blood derived-MSC (UCMSC) and human Wharton's Jelly derived-MSC (WJ-MSC) on the HT-29 cell line.

View Article and Find Full Text PDF

Colorectal cancer is the third most common cancer worldwide. Cancer stem cells are known to play an important role in relapse, and metastases of the disease after chemotherapy. Investigation of new drugs, and their combinations targeting these cells and thus eliminating cancer is one of the most urgent needs of today's chemotherapy.

View Article and Find Full Text PDF

In order to provide more effective treatment strategies for the rapid healing of diabetic wounds, novel therapeutic approaches need to be developed. The therapeutic potential of peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone hydrochloride (PHR) in two different release kinetic scenarios, burst release and sustained release, was investigated and compared with and tests as potential wound healing dressings. PHR-loaded fibrous mats were successfully fabricated using polyvinyl-pyrrolidone and polycaprolactone by scalable pressurized gyration.

View Article and Find Full Text PDF

Indocyanine green (ICG) provides an advantage in the imaging of deep tumors as it can reach deeper location without being absorbed in the upper layers of biological tissues in the wavelengths, which named "therapeutic window" in the tissue engineering. Unfortunately, rapid elimination and short-term stability in aqueous media limited its use as a fluorescence probe for the early detection of cancerous tissue. In this study, stabilization of ICG was performed by encapsulating ICG molecules into the biodegradable polymer composited with poly(l-lactic acid) and poly(ε-caprolactone) via a simple one-step multiaxial electrospinning method.

View Article and Find Full Text PDF