Coprophagia by suckling rabbits, i.e. ingestion of feces from their mother, reduces mortality after weaning.
View Article and Find Full Text PDFThe maternal metabolic environment can be detrimental to the health of the offspring. In a previous work, we showed that maternal high-fat (HH) feeding in rabbit induced sex-dependent metabolic adaptation in the fetus and led to metabolic syndrome in adult offspring. As early development representing a critical window of susceptibility, in the present work we aimed to explore the effects of the HH diet on the oocyte, preimplantation embryo and its microenvironment.
View Article and Find Full Text PDFAnimal toxicological studies often fail to mimic the complexity of the human exposome, associating low doses, combined molecules and long-term exposure. Since the reproductive potential of a woman begins in the fetal ovary, the literature regarding the disruption of its reproductive health by environmental toxicants remains limited. Studies draw attention to follicle development, a major determinant for the quality of the oocyte, and the preimplantation embryo, as both of them are targets for epigenetic reprogramming.
View Article and Find Full Text PDFThe prevalence of metabolic diseases is increasing, leading to more women entering pregnancy with alterations in the glucose-insulin axis. The aim of this work was to investigate the effect of a hyperglycemic and/or hyperinsulinemic environment on the development of the preimplantation embryo. In rabbit embryos developed in vitro in the presence of high insulin (HI), high glucose (HG), or both (HGI), we determined the transcriptomes of the inner cell mass (ICM) and the trophectoderm (TE).
View Article and Find Full Text PDFDespite the growing interest in the rabbit model for developmental and stem cell biology, the characterization of embryos at the molecular level is still poorly documented. We conducted a transcriptome analysis of rabbit preimplantation embryos from E2.7 (morula stage) to E6.
View Article and Find Full Text PDFThe success of embryo development and implantation depends in part on the environment in which the embryo evolves. However, the composition of the uterine fluid surrounding the embryo in the peri-implantation period remains poorly studied. In this work, we aimed to develop a new strategy to visualize, collect, and analyze both blastocoelic liquid and juxta-embryonic uterine fluid from in vivo peri-implantation rabbit embryos.
View Article and Find Full Text PDFBreast Cancer Anti-estrogen Resistance 4 (BCAR4) was previously characterised in bovine species as a gene preferentially expressed in oocytes, whose inhibition is detrimental to in vitro embryo development. But its role in oogenesis, folliculogenesis and globally fertility in vivo remains unknown. Because the gene is not conserved in mice, rabbits were chosen for investigation of BCAR4 expression and function in vivo.
View Article and Find Full Text PDFBackground: The placenta controls exchanges between the mother and the fetus and therefore fetal development and growth. The maternal environment can lead to disturbance of placental functions, with consequences on the health of the offspring. Since the rabbit placenta is very close to that of humans, rabbit models can provide biomedical data to study human placental function.
View Article and Find Full Text PDFSci Rep
July 2019
Atmospheric pollution has major health effects on directly exposed subjects but intergenerational consequences are poorly characterized. We previously reported that diesel engine exhaust (DE) could lead to structural changes in the placenta of in utero exposed rabbits (first generation, F1). The effects of maternal exposure to DE were further studied on second-generation (F2) rabbits.
View Article and Find Full Text PDFStudy Question: Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis?
Summary Answer: While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis.
What Is Known Already: Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development.
Mono(2-ethylhexyl) phthalate (MEHP), the main di(2-ethylhexyl) phthalate (DEHP) metabolite, is a known reproductive toxicant. Residual levels of 20 nM MEHP have been found in follicular fluid aspirated from IVF-treated women and DEHP-treated animals. The current study examined whether these residual MEHP levels have any effect on the follicle-enclosed oocyte or developing embryo.
View Article and Find Full Text PDFOvarian follicle provides a favorable environment for enclosed oocytes, which acquire their competence in supporting embryo development in tight communications with somatic follicular cells and follicular fluid (FF). Although steroidogenesis in theca (TH) and granulosa cells (GC) is largely studied, and the molecular mechanisms of fatty acid (FA) metabolism in cumulus cells (CC) and oocytes are emerging, little data is available regarding lipid metabolism regulation within ovarian follicles. In this study, we investigated lipid composition and the transcriptional regulation of FA metabolism in 3⁻8 mm ovarian follicles in bovine.
View Article and Find Full Text PDFTight metabolic control of type-1 diabetes is essential during gestation, but it could be crucial during the periconception period. Feto-placental consequences of maternal type-1 diabetes around the time of conception need to be explored. Using a rabbit model, type-1 diabetes was induced by alloxan 7 days before mating.
View Article and Find Full Text PDFEpidemiological studies in humans and animal models (including ruminants and horses) have highlighted the critical role of nutrition on developmental programming. Indeed, it has been demonstrated that the nutritional environment during the periconceptional period and foetal development can altered the postnatal performance of the resultant offspring. This nutritional programming can be exerted by maternal and paternal lineages and can affect offspring beyond the F1 generation.
View Article and Find Full Text PDFThe gene encodes one of the 'core' transcription factors necessary to establish and maintain pluripotency in mammals. Its function depends on its precise level of expression, so its transcription has to be tightly regulated. To date, few conserved functional elements have been identified in its 5' regulatory region: a distal and a proximal enhancer, and a minimal promoter, epigenetic modifications of which interfere with expression and function in -derived cell lines.
View Article and Find Full Text PDFChanges to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete.
View Article and Find Full Text PDFMammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability.
View Article and Find Full Text PDFEarly stages of mammalian embryonic development are now known to be very sensitive to their microenvironment, with long term effects on fetal, postnatal, and adult health, thus extending to these early stages the concept of Developmental Origin of Health and Disease (DoHaD). In this scientific context, and with 3% of births in developed countries, safety of Assisted Reproductive Techniques procedures becomes a matter of concern. Besides, embryo technologies in domestic mammals, using huge number of embryos, do not seem to evidence heavy impacts on adult phenotypes.
View Article and Find Full Text PDFBackground: Supplementation of bovine oocyte-cumulus complexes during in vitro maturation (IVM) with 1 μM of docosahexaenoic acid (DHA), C22:6 n-3 polyunsaturated fatty acid, was reported to improve in vitro embryo development. The objective of this paper was to decipher the mechanisms of DHA action.
Results: Transcriptomic analysis of 1 μM DHA-treated and control cumulus cells after 4 h IVM showed no significant difference in gene expression.
During the last few years, several co-culture systems using either BOEC or VERO feeder cells have been developed to improve bovine embryo development and these systems give better results at high oxygen concentration (20%). In parallel, the SOF medium, used at 5% O, has been developed to mimic the oviduct fluid. Since 2010s, the SOF medium has become popular in improving bovine embryo development and authors have started to associate this medium to co-culture systems.
View Article and Find Full Text PDFRabbit induced pluripotent stem cells (rbiPSCs) possess the characteristic features of primed pluripotency as defined in rodents and primates. In the present study, we reprogrammed rbiPSCs using human Krüppel-like factors (KLFs) 2 and 4 and cultured them in a medium supplemented with fetal calf serum and leukemia inhibitory factor. These cells (designated rbEKA) were propagated by enzymatic dissociation for at least 30 passages, during which they maintained a normal karyotype.
View Article and Find Full Text PDF