Publications by authors named "Duraisingh M"

Sequential lytic cycles driven by cascading transcriptional waves underlie pathogenesis in the apicomplexan parasite Toxoplasma gondii. This parasite's unique division by internal budding, short cell cycle, and jumbled up classically defined cell cycle stages have restrained in-depth transcriptional program analysis. Here, unbiased transcriptome and chromatin accessibility maps throughout the lytic cell cycle are established at the single-cell level.

View Article and Find Full Text PDF

Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development.

View Article and Find Full Text PDF

The South Asia International Center of Excellence for Malaria Research, an NIH-funded collaborative program, investigated the epidemiology of malaria in the Indian state of Goa through health facility-based data collected from the Goa Medical College and Hospital (GMC), the state's largest tertiary healthcare facility, between 2012 and 2021. Our study investigated region-specific spatial and temporal patterns of malaria transmission in Goa and the factors driving such patterns. Over the past decade, the number of malaria cases, inpatients, and deaths at the GMC decreased significantly after a peak in 2014-2015.

View Article and Find Full Text PDF

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion.

View Article and Find Full Text PDF

Background: Chemotherapies for malaria and babesiosis frequently succumb to the emergence of pathogen-related drug-resistance. Host-targeted therapies are thought to be less susceptible to resistance but are seldom considered for treatment of these diseases.

Methods: Our overall objective was to systematically assess small molecules for host cell-targeting activity to restrict proliferation of intracellular parasites.

View Article and Find Full Text PDF

is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of parasites. The diversity of parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets.

View Article and Find Full Text PDF

The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression.

View Article and Find Full Text PDF

The malaria parasite remains a major global public health challenge, and no vaccine is approved for use in humans. Here, we assessed whether strain-transcendent immunity can be achieved by repeated infection in monkeys. Sterile immunity was achieved after two homologous infections, whereas subsequent heterologous challenge provided only partial protection.

View Article and Find Full Text PDF

Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease.

View Article and Find Full Text PDF
Article Synopsis
  • - Tryptophan Rich Antigens (TRAgs) are a group of proteins found in all Plasmodium species, but they're especially abundant in P. vivax and related parasites, and they play a role in the invasion of red blood cells.
  • - Scientists discovered that the TRAg PVP01_0000100 binds to reticulocytes through its C-terminal tryptophan-rich domain, which was structurally analyzed using X-ray crystallography and found to resemble lipid-binding domains.
  • - The study shows that PVP01_0000100 has a preference for binding sulfatide, a lipid found in cell membranes, and that its equivalent in P. knowlesi is crucial for the parasite
View Article and Find Full Text PDF

Background: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) remains prevalent because heterozygous carriers (HbAS) are partially resistant to Plasmodium falciparum malaria. Sickle hemoglobin (HbS) polymerization in low and intermediate oxygen (O ) conditions is the main driver of HbAS-driven resistance to P. falciparum malaria.

View Article and Find Full Text PDF

Unlabelled: is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of parasites. The diversity of parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets.

View Article and Find Full Text PDF

Background: is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning.

View Article and Find Full Text PDF

Apicomplexan egress from host cells is fundamental to the spread of infection and is poorly characterized in spp., parasites of veterinary importance and emerging zoonoses. Through the use of video microscopy, transcriptomics and chemical genetics, we have implicated signaling, proteases and gliding motility as key drivers of egress by .

View Article and Find Full Text PDF

Twenty years ago, the first transcriptome of the intraerythrocytic developmental cycle of the malaria parasite Plasmodium falciparum was published in PLOS Biology. Since then, transcriptomics studies have transformed the study of parasite biology.

View Article and Find Full Text PDF

Quiescence is a reversible nonproliferative cellular state that allows organisms to persist through unfavorable conditions. Quiescence can be stimulated by a wide range of external or intrinsic factors. Cells undergo a coordinated molecular program to enter and exit from the quiescent state, which is governed by signaling, transcriptional and translational changes, epigenetic mechanisms, metabolic switches, and changes in cellular architecture.

View Article and Find Full Text PDF

The Malaria Evolution in South Asia (MESA) International Center for Excellence in Malaria Research (ICEMR) was established by the US National Institutes of Health (US NIH) as one of 10 malaria research centers in endemic countries. In 10 years of hospital-based and field-based work in India, the MESA-ICEMR has documented the changing epidemiology and transmission of malaria in four different parts of India. Malaria Evolution in South Asia-ICEMR activities, in collaboration with Indian partners, are carried out in the broad thematic areas of malaria case surveillance, vector biology and transmission, antimalarial resistance, pathogenesis, and host response.

View Article and Find Full Text PDF

The Malaria Evolution in South Asia (MESA) International Center of Excellence for Malaria Research (ICEMR) conducted research studies at multiple sites in India to record blood-slide positivity over time, but also to study broader aspects of the disease. From the Southwest of India (Goa) to the Northeast (Assam), the MESA-ICEMR invested in research equipment, operational capacity, and trained personnel to observe frequencies of Plasmodium falciparum and Plasmodium vivax infections, clinical presentations, treatment effectiveness, vector transmission, and reinfections. With Government of India partners, Indian and U.

View Article and Find Full Text PDF
Article Synopsis
  • Chimpanzees host various malaria parasites, including some closely related to the dangerous P. falciparum, and this study analyzes the ecology and spread of these infections in wild populations.
  • Researchers used molecular techniques to analyze fecal samples and discovered that malaria infections in chimpanzees start early in life and exhibit seasonal prevalence, with the likelihood of infection peaking at around 24.5°C.
  • The study also found that malaria prevalence is influenced by ambient temperature and forest cover, emphasizing the role of forest-dwelling mosquito vectors and mapping areas in equatorial Africa that indicate potential risks for human malaria exposure.
View Article and Find Full Text PDF

Babesia is a genus of apicomplexan parasites that infect red blood cells in vertebrate hosts. Pathology occurs during rapid replication cycles in the asexual blood stage of infection. Current knowledge of Babesia replication cycle progression and regulation is limited and relies mostly on comparative studies with related parasites.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different genes influence growth and nutrient use in various strains of malaria parasites under different media conditions.
  • In competition experiments, the lab-adapted strain 3D7 outperformed the recently isolated strain NHP4026 in human serum, while the opposite was true in AlbuMAX media.
  • By performing genetic crosses in humanized mice and analyzing allele frequency changes, researchers identified three specific genomic regions linked to growth differences in the two media types, highlighting a strong selection pressure on the parasites' growth traits.
View Article and Find Full Text PDF

Paracrine ATP release by erythrocytes has been shown to regulate endothelial cell function via purinergic signaling, and this erythoid-endothelial signaling network is pathologically dysregulated in sickle cell disease. We tested the role of extracellular ATP-mediated purinergic signaling in the activation of Psickle, the mechanosensitive Ca-permeable cation channel of human sickle erythrocytes (SS RBC). Psickle activation increases intracellular [Ca] to stimulate activity of the RBC Gardos channel, KCNN4/KCa3.

View Article and Find Full Text PDF

A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion.

View Article and Find Full Text PDF