In this work, we employ large-scale coarse-grained molecular dynamics (CGMD) simulations to study the three-dimensional line edge roughness associated with line and space patterns of chemo-epitaxially directed symmetric block copolymers (BCPs) on a flat substrate. The di-block copolymer chain length and interaction parameters are validated with the experimental BCP period, L0 and corresponding molecular weight. Defect-free lamellae are formed, after which the system is quenched below the glass transition temperature before selectively dry-etching off one of the BCP phases.
View Article and Find Full Text PDFIn this paper we study the morphology formed by asymmetric di-block copolymers (di-BCPs) under various confinements using a large-scale coarse-grained molecular dynamics (CGMD) framework. We start with a simple flat plate confinement with the bottom and the top substrate attractive to the minor phase. Studies at a lower confinement length of 17σ have shown that there exists a critical chain length above which a transition from a three-domain morphology to a two-domain morphology is observed.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) represent one of the most promising materials in nanoscience today, with their unique electronic, chemical and mechanical properties. Strong van der Waals interactions and poor solubility greatly affect their potential for applications in various fields. In the past decade, great efforts have been undertaken to modify CNTs into organophilic material via covalent and non-covalent grafting strategies.
View Article and Find Full Text PDFRheological evidence is provided demonstrating that covalent grafting of monodisperse isotactic poly(L-leucine) branches onto linear hyaluronan (HA) polysaccharide chains yields comb-branched HA chains that self-assemble into long-lived physical networks in aqueous solutions driven by hydrophobic interactions between poly(L-leucine) chains. This is in stark contrast to native (unmodified) HA solutions which exhibit no tendency to form long-lived physical networks.
View Article and Find Full Text PDFPoly(l-leucine) grafted hyaluronan (HA-g-PLeu) has been synthesized via a Michael addition reaction between primary amine terminated poly(l-leucine) and acrylate-functionalized HA (TBAHA-acrylate). The precursor hyaluronan was first functionalized with acrylate groups by reaction with acryloyl chloride in the presence of triethylamine in N,N-dimethylformamide. (1)H NMR analysis of the resulting product indicated that an increase in the concentration of acryloylchoride with respect to hydroxyl groups on HA has only a moderate effect on functionalization efficiency, f.
View Article and Find Full Text PDFAtom transfer radical polymerization of methacrylates has been performed using hydrated natural clay as a support for a CuBr(2)-ligand complex and the supported clay catalyst has been recycled for 21 batch polymerizations without losing its activity.
View Article and Find Full Text PDFGrafting reactions of living polystyryllithium (PSLi) with acid chloride containing multi-walled carbon nanotubes (MWNTs-COCI) were performed under vacuum in benzene at room temperature. Covalent grafting of polystyrene (PS) was characterized using spectroscopic, microscopic, and thermogravimetric analyses. Grafting at different ratios of macroanion to acylchloride of the carbon nanotubes showed that the grafting efficiency was not dependent on the concentration of the macroanions.
View Article and Find Full Text PDFSingle- and multiwalled carbon nanotubes have been covalently functionalized with free-base porphyrin. The quantity of porphyrin linked to the surface was determined from thermogravimetric and UV-vis analysis. A reversible protonation equilibrium between the attached porphyrin and the residual acid groups of the carbon nanotubes has been identified.
View Article and Find Full Text PDF