Publications by authors named "Duquesne K"

Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).

View Article and Find Full Text PDF

Over the past 30 years, research on meniscal kinematics has been limited by challenges such as low-resolution imaging and capturing continuous motion from static data. This study aimed to develop a computational knee model that overcomes these limitations and enables the continuous assessment of meniscal dynamics. A high-resolution MRI dataset (n = 11) was acquired in 4 configurations of knee flexion.

View Article and Find Full Text PDF

Given the inherent variability in walking speeds encountered in day-to-day activities, understanding the corresponding alterations in ankle biomechanics would provide valuable clinical insights. Therefore, the objective of this study was to examine the influence of different walking speeds on biomechanical parameters, utilizing gait analysis and musculoskeletal modelling. Twenty healthy volunteers without any lower limb medical history were included in this study.

View Article and Find Full Text PDF

Sesquiterpene cyclases (STC) catalyse the cyclization of the C15 molecule farnesyl diphosphate into a vast variety of mono- or polycyclic hydrocarbons and, for a few enzymes, oxygenated structures, with diverse stereogenic centres. The huge diversity in sesquiterpene skeleton structures in nature is primarily the result of the type of cyclization driven by the STC. Despite the phenomenal impact of fungal sesquiterpenes on the ecology of fungi and their potentials for applications, the fungal sesquiterpenome is largely untapped.

View Article and Find Full Text PDF

The goal was to evaluate tibiofemoral knee joint kinematics during stair descent, by simulating the full stair descent motion in vitro. The knee joint kinematics were evaluated for two types of knee implants: bi-cruciate retaining and bi-cruciate stabilized. It was hypothesized that the bi-cruciate retaining implant better approximates native kinematics.

View Article and Find Full Text PDF

As measurements of knee joint contact forces remain challenging, computational musculoskeletal modeling has been popularized as an encouraging solution for non-invasive estimation of joint mechanical loading. Computational musculoskeletal modeling typically relies on laborious manual segmentation as it requires reliable osseous and soft tissue geometry. To improve on feasibility and accuracy of patient-specific geometry predictions, a generic computational approach that can easily be scaled, morphed and fitted to patient-specific knee joint anatomy is presented.

View Article and Find Full Text PDF

Background And Objective: Computer simulations of joint contact mechanics have great merit to improve our current understanding of articular ankle pathology. Owed to its computational simplicity, discrete element analysis (DEA) is an encouraging alternative to finite element analysis (FEA). However, previous DEA models lack subject-specific anatomy and may oversimplify the biomechanics of the ankle.

View Article and Find Full Text PDF

To date, the amount of cartilage loss is graded by means of discrete scoring systems on artificially divided regions of interest (ROI). However, optimal statistical comparison between and within populations requires anatomically standardized cartilage thickness assessment. Providing anatomical standardization relying on non-rigid registration, we aim to compare morphotypes of a healthy control cohort and virtual reconstructed twins of end-stage knee OA subjects to assess the shape-related knee OA risk and to evaluate possible correlations between phenotype and location of cartilage loss.

View Article and Find Full Text PDF

In 2019 four groups reported independently the development of a simplified enzymatic access to the diphosphates (IPP and DMAPP) of isopentenol and dimethylallyl alcohol (IOH and DMAOH). The former are the two universal precursors of all terpenes. We report here on an improved version of what we call the terpene mini-path as well as its use in enzymatic cascades in combination with various transferases.

View Article and Find Full Text PDF

Temperature is a crucial parameter for biological and chemical processes. Its effect on enzymatically catalysed reactions has been known for decades, and stereo- and enantiopreference are often temperature-dependent. For the first time, we present the temperature effect on the Baeyer-Villiger oxidation of rac-bicyclo[3.

View Article and Find Full Text PDF

Background And Objectives: The most widespread statistical modeling technique is based on Principal Component Analysis (PCA). Although this approach has several appealing features, it remains hampered by its linearity. Principal Polynomial Analysis (PPA) can capture non-linearity in a sequential algorithm, while maintaining the interesting properties of PCA.

View Article and Find Full Text PDF

Background: Passive energy storage and return has long been recognized as one of the central mechanisms for minimizing the energy cost needed for terrestrial locomotion. Although the iliofemoral ligament (IFL) is the strongest ligament in the body, its potential role in energy-efficient walking remains unexplored.

Purpose: To identify the contribution of the IFL to the amount of work performed by the hip muscles for normal, straight-level walking.

View Article and Find Full Text PDF

Background And Objective: Revealing the complexity behind subject-specific ankle joint mechanics requires simultaneous analysis of three-dimensional bony and soft-tissue structures. 3D musculoskeletal models have become pivotal in orthopedic treatment planning and biomechanical research. Since manual segmentation of these models is time-consuming and subject to manual errors, (semi-) automatic methods could improve the accuracy and enlarge the sample size of personalised 'in silico' biomechanical experiments and computer-assisted treatment planning.

View Article and Find Full Text PDF

Baeyer-Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to lactones under very mild reaction conditions. This enzymatic route is hindered by the requirement of a stoichiometric supply of auxiliary substrates for cofactor recycling and difficulties with supplying the necessary oxygen. The recombinant production of BVMO in cyanobacteria allows the substitution of auxiliary organic cosubstrates with water as an electron donor and the utilization of oxygen generated by photosynthetic water splitting.

View Article and Find Full Text PDF

Terpenoids constitute the largest class of natural compounds and are extremely valuable from an economic point of view due to their extended physicochemical properties and biological activities. Due to recent environmental concerns, terpene extraction from natural sources is no longer considered as a viable option, and neither is the chemical synthesis to access such chemicals due to their sophisticated structural characteristics. An alternative to produce terpenoids is the use of biotechnological tools involving, for example, the construction of enzymatic cascades (cell-free synthesis) or a microbial bio-production thanks to metabolic engineering techniques.

View Article and Find Full Text PDF

The structural diversity of terpenes is particularly notable and many studies are carried out to increase it further. In the terpene biosynthetic pathway this diversity is accessible from only two common precursors, i. e.

View Article and Find Full Text PDF

Hip arthroscopy is technically demanding and presents a steep learning curve. Joint access and maneuverability of surgical tools are impeded by a large soft-tissue envelope. Furthermore, cam resection is challenging owing to the small size of the lesion and the difficulty in delineating what is normal and where the cam starts.

View Article and Find Full Text PDF

Data reduction techniques are applied to reduce the volume of data while maintaining its integrity. For cyclic motion data, a reliable overview comparing these methods is lacking. Therefore, this study aims to evaluate the features of the different data reduction techniques by applying them to large public data sets.

View Article and Find Full Text PDF

The risk for ischiofemoral impingement has been mainly related to a reduced ischiofemoral distance and morphological variance of the femur. From an evolutionary perspective, however, there are strong arguments that the condition may also be related to sexual dimorphism of the pelvis. We, therefore, investigated the impact of gender-specific differences in anatomy of the ischiofemoral space on the ischiofemoral clearance, during static and dynamic conditions A random sampling Monte-Carlo experiment was performed to investigate ischiofemoral clearance during stance and gait in a large ( = 40 000) virtual study population, while using gender-specific kinematics.

View Article and Find Full Text PDF

Statistical shape methods have proven to be useful tools in providing statistical predications of several clinical and biomechanical features as to analyze and describe the possible link with them. In the present study, we aimed to explore and quantify the relationship between biometric features derived from imaging data and model-derived kinematics. Fifty-seven healthy males were gathered under strict exclusion criteria to ensure a sample representative of normal physiological conditions.

View Article and Find Full Text PDF

Two-component flavoprotein monooxygenases consist of a reductase and an oxygenase enzyme. The proof of functionality of the latter without its counterpart as well as the mechanism of flavin transfer remains unanswered beyond doubt. To tackle this question, we utilized a reductase-free reaction system applying purified 2,5-diketocamphane-monooxygenase I (2,5-DKCMO), a FMN-dependent type II Baeyer-Villiger monooxygenase, and synthetic nicotinamide analogues (NCBs) as dihydropyridine derivatives for FMN reduction.

View Article and Find Full Text PDF

The efficiency of a versatile in vivo cascade involving a promiscuous alcohol dehydrogenase, obtained from a biodiversity search, and a Baeyer-Villiger monooxygenase was enhanced by the independent control of the production level of each enzyme to produce ε-caprolactone and 3,4-dihydrocoumarin. This goal was achieved by adjusting the copy number per cell of Escherichia coli plasmids. We started from the observation that this number generally correlates with the amount of produced enzyme and demonstrated that an in vivo multi-enzymatic system can be improved by the judicious choice of plasmid, the lower activity of the enzyme that drives the limiting step being counter-balanced by a higher concentration.

View Article and Find Full Text PDF

Background: Terpenes are industrially relevant natural compounds the biosynthesis of which relies on two well-established-mevalonic acid (MVA) and methyl erythritol phosphate (MEP)-pathways. Both pathways are widely distributed in all domains of life, the former is predominantly found in eukaryotes and archaea and the latter in eubacteria and chloroplasts. These two pathways supply isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the universal building blocks of terpenes.

View Article and Find Full Text PDF

Membrane proteins are typically expressed in heterologous systems with a view to in vitro characterization. A critical step in the preparation of membrane proteins after expression in any system is the solubilization of the protein in aqueous solution, typically using detergents and lipids, to obtain the protein in a form suitable for purification, structural or functional analysis. This process is particularly difficult as the objective is to prepare the protein in an unnatural environment, a protein detergent complex, separating it from its natural lipid partners while causing the minimum destabilization or modification of the structure.

View Article and Find Full Text PDF

Out of 107 fungal strains belonging to three phyla (Ascomycota, Basidiomycota and Zygomycota) and 46 genera, 86 exhibited Baeyer-Villiger monooxygenase (BVMO) activity against racemic bicyclo[3.2.0]heptenone.

View Article and Find Full Text PDF