Interaction of β-D-glucopyranuronic acid (GlcA), N-acetyl-β-D-glucosamine (GlcNAc), N-acetyl-β-D-galactosamine (GalNAc) and two natural decameric glycosaminoglycans, hyaluronic acid (HA) and Chondroitin (Ch) with carboxylated carbon nanotubes, were studied using molecular dynamics simulations in a condensed phase. The force field used for carbohydrates was the GLYCAM-06j version, while functionalized carbon nanotubes (fCNT) were described using version two of the general amber force field. We found a series of significant differences in carbohydrate-fCNT adsorption strength depending on the monosaccharide molecule and protonation state of surface carboxyl groups.
View Article and Find Full Text PDFIn this paper, we describe molecular dynamics simulation results of the interactions between four peptides (mTM10, mTM16, TM17 and KTM17) with micelles of dodecylphosphocholine (DPC) and dodecyl-β-d-maltoside (DDM). These peptides represent three transmembrane fragments (TM10, 16 and 17) from the MSD1 and MSD2 membrane-spanning domains of an ABC membrane protein (hMRP1), which play roles in the protein functions. The peptide-micelle complex structures, including the tryptophan accessibility and dynamics were compared to circular dichroism and fluorescence studies obtained in water, trifluoroethanol and with micelles.
View Article and Find Full Text PDFGenetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2012
We present the first comparative molecular dynamics investigation for a dodecylphosphocholine (DPC) micelle performed in condensed phase using the CHARMM36, GROMOS53A6, GROMOS54A7, and GROMOS53A6/Berger force fields and a set of parameters developed anew. Our potential consists of newly derived RESP atomic charges, which are associated with the Amber99SB force field developed for proteins. This new potential is expressly designed for simulations of peptides and transmembrane proteins in a micellar environment.
View Article and Find Full Text PDFIron chelators, through their capacity to modulate the iron concentration in cells, are promising molecules for cancer chemotherapy. Chelators with high lipophilicity easily enter into cells and deplete the iron intracellular pool. Consequently, iron-dependent enzymes, such as ribonucleotide reductase, which is over-expressed in cancer cells, become nonfunctional.
View Article and Find Full Text PDFMolecular dynamics simulations describing the solvation process of native and modified cyclodextrins (per-substituted α-, β-, and γ-cyclodextrins, as well as an amino-acid derived β-cyclodextrin) have been performed. A homogeneous force field, namely "q4md-CD", has been built from the development of a new force field topology database and from a combination of the GLYCAM04 and Amber99SB force fields to correctly describe the geometrical, structural, dynamical and hydrogen bonding aspects of heterogeneous cyclodextrin based systems. These include native, organo- and peptidic-linked cyclodextrins.
View Article and Find Full Text PDFThis paper deals with the development and validation of new potential parameter sets, based on the CHARMM36 and GLYCAM06 force fields, to simulate micelles of the two anomeric forms (α and β) of N-dodecyl-β-maltoside (C(12)G(2)), a surfactant widely used in the extraction and purification of membrane proteins. In this context, properties such as size, shape, internal structure, and hydration of the C(12)G(2) anomer micelles were thoroughly investigated by molecular dynamics simulations and the results compared with experiments. Additional simulations were also performed with the older CHARMM22 force field for carbohydrates (Kuttel, M.
View Article and Find Full Text PDFDeriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.
View Article and Find Full Text PDFMultimeric lactosides based on carbohydrate scaffolds with valencies ranging from 1 to 4 and different linker lengths were synthesized by a copper-catalyzed azide-alkyne cycloaddition (CuAAC). The binding affinities and crosslinking abilities of the new "click clusters" toward biologically relevant galectins (gal-1, gal-3) and peanut lectin were evaluated by fluorescent polarization assay (FPA) and enzyme-linked lectin assay (ELLA), respectively. FPA indicated that the binding affinities of the synthetic multilactosides towards the galectins increased proportionally with their lactosyl content, without significant differences due to the spacer length.
View Article and Find Full Text PDFThe focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields.
View Article and Find Full Text PDFMost adults affected with HFE hereditary hemochromatosis (HH type 1, MIMmusical sharp 235200) are homozygous for the p.Cys282Tyr mutation in HFE (NC_000006.10, region 26195427 to 26205038).
View Article and Find Full Text PDFAbasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5'-CCA AAG6 XA8C CGG G-3', where X denotes the abasic site) and characterized by 2D NMR spectroscopy.
View Article and Find Full Text PDFA short and efficient strategy for the synthesis of multi-valent mannosides based on a selectively functionalized carbohydrate scaffold was reported involving (i) direct regioselective azidation of unprotected commercial saccharides, (ii) acetylation, (iii) grafting of the mannosyl ligands by click chemistry, and (iv) deacetylation. New glycoclusters with a valency ranging from 1 to 4 and different spatial arrangements of the epitopes were obtained. Binding affinities of the new glycoclusters toward concanavalin A (Con A) lectin were investigated by an enzyme-linked lectin essay (ELLA).
View Article and Find Full Text PDFA 4'-oxidized abasic site (X) has been synthesized in a defined duplex DNA sequence, 5'-d(CCAAAGXACCGGG)-3'/3'-d(GGTTTCATGGCCC)-5' (1). Its structure has been determined by two-dimensional NMR methods, molecular modeling, and molecular dynamics simulations. 1 is globally B-form with the base (A) opposite X intrahelical and well-stacked.
View Article and Find Full Text PDFIn Caucasians, 4-35% of hemochromatosis patients carry at least one chromosome without a common HFE mutation (i.e. C282Y, H63D and S65C).
View Article and Find Full Text PDFFar-UV photolysis of 4-thiothymidylyl(3'-5')thymidine led to the formation of three stable derivatives: one resulting from a combination between a 3'-end methylene radical and a 5'-end C(4) radical [4-(alpha-thyminyl) derivative] and two formed after a combination between a 3'-end methylene radical and a 5'-end C(6) radical [6-(alpha-thyminyl) derivative]. In the latter series, two stereochemical pathways took place during the reaction between the methylene and C(6) radicals. The major pathway occurred when the 5'-base glycosidic bond had an anti conformation leading to an S configuration of the C(6) Tp-end.
View Article and Find Full Text PDFThe increase in computer power and the development of new mathematical concepts implemented in software have allowed computational chemistry to emerge as a new research field. Although programs were freely distributed during the "golden age" of this discipline, today they are usually copyrighted and have become easier and easier to use through sophisticated graphical interfaces. This "democratization" is a vector of success for this discipline.
View Article and Find Full Text PDFIn Caucasians, from 4 to 35% of hereditary hemochromatosis (HH) patients carry a least one chromosome without a common assigned HFE mutation (i.e., C282Y, H63D, and S65C).
View Article and Find Full Text PDFA computational study of a series of N(1)- and/or C(6)-alkyl-5,6-dihydrothymine diastereomers at theory levels up to MP4(SDTQ)/6-31G//HF/6-31G and MP2/6-311G//HF/6-31G has demonstrated the respective importance of the substituents at positions 1, 5, and 6 on the energetically favored conformation of each isomer. Results obtained both in the gas and condensed phase indicate that unsubstitution of the N(1)-position favors a half-chair conformation with the C(5) -and C(6)-substituents in the equatorial position. On the other hand, in the case of the (6S)-1,6-dimethyl-5,6-dihydrothymine, the C(6)-substituent adopts the axial position to minimize its van der Waals interactions with the N(1)-substituent.
View Article and Find Full Text PDFThe solution structure of a new B-chain mutant of bovine insulin, in which the cysteines B7 and B19 are replaced by two serines, has been determined by circular dichroism, 2D-NMR and molecular modeling. This structure is compared with that of the oxidized B-chain of bovine insulin [Hawkins et al. (1995) Int.
View Article and Find Full Text PDFThe design and total synthesis of a novel insulin A-chain mutant, analogue 3, is reported. In this compound, the cysteines implied in the two insulin inter-chain disulfide bridges are replaced by two serines (residues Ser(A7) and Ser(A20)) and the intra-A-chain disulfide bridge (residues Cys(A6) and Cys(A11)) is conserved. This A-chain analogue (3) has been tested in three in vitro cell culture assays, using insulin as a reference.
View Article and Find Full Text PDF