Publications by authors named "Duomeng Yang"

Article Synopsis
  • RIG-I-like receptors (RLRs) in the cytoplasm detect viral RNA and kickstart the body's initial antiviral defenses, but their interaction with glucose transporters (GLUTs) in immunity has been unclear.
  • The study reveals that GLUT4, which responds to insulin, can inhibit RLR signaling without needing to uptake glucose, particularly when it is trapped in the Golgi until a viral infection occurs.
  • The findings suggest that GLUT4's relocation affects the immune response to viruses, with implications for conditions like inflammatory myopathies where GLUT4 expression is lower, leading to increased interferon activity.
View Article and Find Full Text PDF

Cardiomyopathy is particularly common in septic patients. Our previous studies have shown that activation of the alpha 1 adrenergic receptor (α-AR) on cardiomyocytes inhibits sepsis-induced myocardial dysfunction. However, the role of cardiac endothelial α-AR in septic cardiomyopathy has not been determined.

View Article and Find Full Text PDF

Background: The ubiquitin regulatory X (UBX) domain-containing proteins (UBXNs) are putative adaptors for ubiquitin ligases and valosin-containing protein; however, their in vivo physiological functions remain poorly characterised. We recently showed that UBXN3B is essential for activating innate immunity to DNA viruses and controlling DNA/RNA virus infection. Herein, we investigate its role in adaptive immunity.

View Article and Find Full Text PDF

The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues.

View Article and Find Full Text PDF

β 3 -adrenergic receptor (β 3 -AR) has been proposed as a new therapy for several myocardial diseases. However, the effect of β 3 -AR activation on sepsis-induced myocardial apoptosis is unclear. Here, we investigated the effect of β 3 -AR activation on the cardiomyocyte apoptosis and cardiac dysfunction in cecal ligation and puncture (CLP)-operated rats and lipopolysaccharide (LPS)-treated cardiomyocytes.

View Article and Find Full Text PDF

The Retinoic acid-Inducible Gene I (RIG-I) like receptors (RLRs) are the major viral RNA sensors essential for the initiation of antiviral immune responses. RLRs are subjected to stringent transcriptional and posttranslational regulations, of which ubiquitination is one of the most important. However, the role of ubiquitination in RLR transcription is unknown.

View Article and Find Full Text PDF

Cardiomyopathy is a common complication and significantly increases the risk of death in septic patients. Our previous study demonstrated that post-treatment with dexmedetomidine (DEX) aggravates septic cardiomyopathy. However, the mechanisms for the side effect of DEX post-treatment on septic cardiomyopathy are not well-defined.

View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic named coronavirus disease 2019 (COVID-19) that has become the greatest worldwide public health threat of this century. Recent studies have unraveled numerous mysteries of SARS-CoV-2 pathogenesis and thus largely improved the studies of COVID-19 vaccines and therapeutic strategies. However, important questions remain regarding its therapy.

View Article and Find Full Text PDF

Background: Dexmedetomidine (DEX) administered before or at 30 min after sepsis induction was reported to alleviate septic cardiomyopathy in experimental models. However, sepsis is a life-threatening organ dysfunction due to infection-induced dysregulated host response, whether DEX treatment in the presence of organ dysfunction affects septic cardiomyopathy is unknown. This study investigated the effect of DEX posttreatment on septic cardiomyopathy.

View Article and Find Full Text PDF

Ubiquitin regulatory X domain-containing proteins (UBXN) might be involved in diverse cellular processes. However, their physiological functions remain largely elusive. We recently showed that UBXN3B positively regulated stimulator-of-interferon-genes (STING)-mediated innate immune responses to DNA viruses.

View Article and Find Full Text PDF

Innate immune signaling plays a significant role in the rapid cellular responses against foreign entities. An inflammasome is a large cytosolic polymer of a pattern recognition receptor with/without an adaptor protein, formed in response to these entities. Canonically, an inflammasome can recruit and lead to auto-activation of caspase-1, subsequent maturation and secretion of inflammatory cytokines, and pyroptosis.

View Article and Find Full Text PDF

Intrinsic cardiac adrenergic (ICA) cells regulate both developing and adult cardiac physiological and pathological processes. However, the role of ICA cells in septic cardiomyopathy is unknown. Here we show that norepinephrine (NE) secretion from ICA cells is increased through activation of Toll-like receptor 4 (TLR4) to aggravate myocardial TNF-α production and dysfunction by lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Dobutamine (DOB) is recommended as an inotrope for septic patients with low cardiac output, but its long-term impact on sepsis-induced cardiomyopathy remains unclear. This study investigated the long-term effect of DOB on septic myocardial dysfunction and injury. Rats were exposed to cecal ligation and puncture (CLP), the intrinsic myocardial function, other organ functions, hemodynamics, inflammatory response, serum myocardial injury biomarkers, myocardial apoptosis, and vascular permeability were determined.

View Article and Find Full Text PDF

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) sense viral RNA and activate antiviral immune responses. Herein we investigate their functions in human epithelial cells, the primary and initial target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A deficiency in MDA5, RIG-I or mitochondrial antiviral signaling protein (MAVS) enhanced viral replication.

View Article and Find Full Text PDF

Hematopoiesis is finely regulated to enable timely production of the right numbers and types of mature immune cells to maintain tissue homeostasis. Dysregulated hematopoiesis may compromise antiviral immunity and/or exacerbate immunopathogenesis. Herein, we report an essential role of UBXN3B in maintenance of hematopoietic homeostasis and restriction of immunopathogenesis during respiratory viral infection.

View Article and Find Full Text PDF

Macrophage scavenger receptor 1 (MSR1) plays an important role in host defense to bacterial infections, M2 macrophage polarization, and lipid homeostasis. However, its physiological function in viral pathogenesis remains poorly defined. Herein, we report that MSR1 facilitates vesicular stomatitis virus (VSV) infection in the central nervous system.

View Article and Find Full Text PDF

The retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are the major viral RNA sensors that are essential for activation of antiviral immune responses. However, their roles in severe acute respiratory syndrome (SARS)-causing coronavirus (CoV) infection are largely unknown. Herein we investigate their functions in human epithelial cells, the primary and initial target of SARS-CoV-2, and the first line of host defense.

View Article and Find Full Text PDF

The stimulator of interferon gene (STING) pathway controls both DNA and RNA virus infection. STING is essential for induction of innate immune responses during DNA virus infection, while its mechanism against RNA virus remains largely elusive. We show that STING signaling is crucial for restricting chikungunya virus infection and arthritis pathogenesis.

View Article and Find Full Text PDF

Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and O'nyong nyong virus, cause acute and chronic crippling arthralgia associated with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer from rheumatic manifestations that last 6 months to years. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood.

View Article and Find Full Text PDF

Macrophage scavenger receptor 1 (MSR1) mediates the endocytosis of modified low-density lipoproteins and plays an important antiviral role. However, the molecular mechanism underlying MSR1 antiviral actions remains elusive. We report that MSR1 activates autophagy to restrict infection of Chikungunya virus (CHIKV), an arthritogenic alphavirus that causes acute and chronic crippling arthralgia.

View Article and Find Full Text PDF

Objective: To investigate whether phenylephrine (PE) inhibits sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury through the PI3K/Akt signaling pathway.

Methods: A rat model of sepsis was established by cecal ligation and puncture. PE and/or wortmannin (a PI3K inhibitor) were administered to investigate the role of PI3K/Akt signaling in mediating the effects of PE on inhibiting sepsis-induced cardiac dysfunction, cardiac inflammation, and mitochondrial injury.

View Article and Find Full Text PDF

Increased permeability of pulmonary capillary is a common consequence of sepsis that leads to acute lung injury. In this connection, ulinastatin, a urinary trypsin inhibitor (UTI), is used clinically to mitigate pulmonary edema caused by sepsis. However, the underlying mechanism of UTI in alleviating sepsis-associated pulmonary edema remains to be fully elucidated.

View Article and Find Full Text PDF

Background: Neonatal rat ventricular myocytes (NRVMs) have proven to be an ideal research model for cardiac disease. However, the current methods to purify NRVMs have a limitation to obtain high purity. The purpose of this study was to develop a NRVM purification method by using superparamagnetic iron oxide particles (SIOP).

View Article and Find Full Text PDF

It was demonstrated that α1 adrenergic receptor (α1-AR) activation by phenylephrine (PE) attenuated cardiac dysfunction in lipopolysaccharide (LPS)-challenged mice. However, it is unclear whether PE suppresses sepsis-induced cardiomyocyte apoptosis. Here, we investigated the effects of PE on cardiomyocyte apoptosis in LPS-treated adult rat ventricular myocytes (ARVMs) and septic rats induced by cecal ligation and puncture.

View Article and Find Full Text PDF

Cardiomyopathy is a common complication associated with increased mortality in sepsis, but lacks specific therapy. Here, using genetic and pharmacological approaches, we explored the therapeutic effect of α-adrenergic receptor (AR) blockade on septic cardiomyopathy. CLP-induced septic rats were treated with BRL44408 (α-AR antagonist), prazosin (α-AR antagonist) and/or reserpine.

View Article and Find Full Text PDF